This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 248

2010 Junior Balkan Team Selection Tests - Romania, 4

Let a triangle $ABC$ , $O$ it's circumcenter , $H$ ortocenter and $M$ the midpoint of $AH$. The perpendicular at $M$ to line $OM$ meets $AB$ and $AC$ at points $P$, respective $Q$. Prove that $MP=MQ$. Babis

2017 LMT, Radical Cent

Let $P$ be a point and $\omega$ be a circle with center $O$ and radius $r$ . We define the power of the point $P$ with respect to the circle $\omega$ to be $OP^2 - r^2$ , and we denote this by pow $(P, \omega)$. We define the radical axis of two circles $\omega_1$ and $\omega_2$ to be the locus of all points P such that pow $(P,\omega_1) =$ pow $(P,\omega_2)$. It turns out that the pairwise radical axes of three circles are either concurrent or pairwise parallel. The concurrence point is referred to as the radical center of the three circles. In $\vartriangle ABC$, let $I$ be the incenter, $\Gamma$ be the circumcircle, and $O$ be the circumcenter. Let $A_1,B_1,C_1$ be the point of tangency of the incircle of $\vartriangle ABC$ with side $BC,CA, AB$, respectively. Let $X_1,X_2 \in \Gamma$ such that $X_1,B_1,C_1,X_2$ are collinear in this order. Let $M_A$ be the midpoint of $BC$, and define $\omega_A$ as the circumcircle of $\vartriangle X_1X_2M_A$. Define $\omega_B$ ,$\omega_C$ analogously. The goal of this problem is to show that the radical center of $\omega_A$, $\omega_B$, $\omega_C$ lies on line $OI$. (a) Let$ A'_1$ denote the intersection of $B_1C_1$ and $BC$. Show that $\frac{A_1B}{A_1C}=\frac{A'_1B}{A'_1C}$. (b) Prove that $A_1$ lies on $\omega_A$. (c) Prove that $A_1$ lies on the radical axis of $\omega_B$ and $\omega_C$ . (d) Prove that the radical axis of $\omega_B$ and $\omega_C$ is perpendicular to $B_1C_1$. (e) Prove that the radical center of $\omega_A$, $\omega_B$, $\omega_C$ is the orthocenter of $\vartriangle A_1B_1C_1$. (f ) Conclude that the radical center of $\omega_A$, $\omega_B$, $\omega_C$ , $O$, and $I$ are collinear. PS. You had better use hide for answers.

2005 Bulgaria National Olympiad, 2

Consider two circles $k_{1},k_{2}$ touching externally at point $T$. a line touches $k_{2}$ at point $X$ and intersects $k_{1}$ at points $A$ and $B$. Let $S$ be the second intersection point of $k_{1}$ with the line $XT$ . On the arc $\widehat{TS}$ not containing $A$ and $B$ is chosen a point $C$ . Let $\ CY$ be the tangent line to $k_{2}$ with $Y\in k_{2}$ , such that the segment $CY$ does not intersect the segment $ST$ . If $I=XY\cap SC$ . Prove that : (a) the points $C,T,Y,I$ are concyclic. (b) $I$ is the excenter of triangle $ABC$ with respect to the side $BC$.

2014 ELMO Shortlist, 2

$ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent. [i]Proposed by Yang Liu[/i]

2012 ELMO Shortlist, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

2005 Turkey MO (2nd round), 2

In a triangle $ABC$ with $AB<AC<BC$, the perpendicular bisectors of $AC$ and $BC$ intersect $BC$ and $AC$ at $K$ and $L$, respectively. Let $O$, $O_1$, and $O_2$ be the circumcentres of triangles $ABC$, $CKL$, and $OAB$, respectively. Prove that $OCO_1O_2$ is a parallelogram.

2021 USEMO, 4

Let $ABC$ be a triangle with circumcircle $\omega$, and let $X$ be the reflection of $A$ in $B$. Line $CX$ meets $\omega$ again at $D$. Lines $BD$ and $AC$ meet at $E$, and lines $AD$ and $BC$ meet at $F$. Let $M$ and $N$ denote the midpoints of $AB$ and $ AC$. Can line $EF$ share a point with the circumcircle of triangle $AMN?$ [i]Proposed by Sayandeep Shee[/i]

2012 ELMO Shortlist, 2

In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$. a) Prove $SX,TY, AD$ are concurrent at a point $Z$. b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$. [i]Ray Li.[/i]

2017 USA TSTST, 1

Let $ABC$ be a triangle with circumcircle $\Gamma$, circumcenter $O$, and orthocenter $H$. Assume that $AB\neq AC$ and that $\angle A \neq 90^{\circ}$. Let $M$ and $N$ be the midpoints of sides $AB$ and $AC$, respectively, and let $E$ and $F$ be the feet of the altitudes from $B$ and $C$ in $\triangle ABC$, respectively. Let $P$ be the intersection of line $MN$ with the tangent line to $\Gamma$ at $A$. Let $Q$ be the intersection point, other than $A$, of $\Gamma$ with the circumcircle of $\triangle AEF$. Let $R$ be the intersection of lines $AQ$ and $EF$. Prove that $PR\perp OH$. [i]Proposed by Ray Li[/i]

2014 Sharygin Geometry Olympiad, 21

Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.

2025 Iran MO (2nd Round), 4

Given is an acute and scalene triangle $ABC$ with circumcenter $O$. $BO$ and $CO$ intersect the altitude from $A$ to $BC$ at points $P$ and $Q$ respectively. $X$ is the circumcenter of triangle $OPQ$ and $O'$ is the reflection of $O$ over $BC$. $Y$ is the second intersection of circumcircles of triangles $BXP$ and $CXQ$. Show that $X,Y,O'$ are collinear.

2006 Italy TST, 1

The circles $\gamma_1$ and $\gamma_2$ intersect at the points $Q$ and $R$ and internally touch a circle $\gamma$ at $A_1$ and $A_2$ respectively. Let $P$ be an arbitrary point on $\gamma$. Segments $PA_1$ and $PA_2$ meet $\gamma_1$ and $\gamma_2$ again at $B_1$ and $B_2$ respectively. a) Prove that the tangent to $\gamma_{1}$ at $B_{1}$ and the tangent to $\gamma_{2}$ at $B_{2}$ are parallel. b) Prove that $B_{1}B_{2}$ is the common tangent to $\gamma_{1}$ and $\gamma_{2}$ iff $P$ lies on $QR$.

2003 All-Russian Olympiad, 4

The inscribed sphere of a tetrahedron $ABCD$ touches $ABC,ABD,ACD$ and $BCD$ at $D_1,C_1,B_1$ and $A_1$ respectively. Consider the plane equidistant from $A$ and plane $B_1C_1D_1$ (parallel to $B_1C_1D_1$) and the three planes defined analogously for the vertices $B,C,D$. Prove that the circumcenter of the tetrahedron formed by these four planes coincides with the circumcenter of tetrahedron of $ABCD$.

2014 Saudi Arabia BMO TST, 3

Let $ABCD$ be a parallelogram. A line $\ell$ intersects lines $AB,~ BC,~ CD, ~DA$ at four different points $E,~ F,~ G,~ H,$ respectively. The circumcircles of triangles $AEF$ and $AGH$ intersect again at $P$. The circumcircles of triangles $CEF$ and $CGH$ intersect again at $Q$. Prove that the line $P Q$ bisects the diagonal $BD$.

2023 Germany Team Selection Test, 1

In a triangle $\triangle ABC$ with orthocenter $H$, let $BH$ and $CH$ intersect $AC$ and $AB$ at $E$ and $F$, respectively. If the tangent line to the circumcircle of $\triangle ABC$ passing through $A$ intersects $BC$ at $P$, $M$ is the midpoint of $AH$, and $EF$ intersects $BC$ at $G$, then prove that $PM$ is parallel to $GH$. [i]Proposed by Sreejato Bhattacharya[/i]

2007 All-Russian Olympiad, 6

Let $ABC$ be an acute triangle. The points $M$ and $N$ are midpoints of $AB$ and $BC$ respectively, and $BH$ is an altitude of $ABC$. The circumcircles of $AHN$ and $CHM$ meet in $P$ where $P\ne H$. Prove that $PH$ passes through the midpoint of $MN$. [i]V. Filimonov[/i]

1986 IMO Longlists, 3

A line parallel to the side $BC$ of a triangle $ABC$ meets $AB$ in $F$ and $AC$ in $E$. Prove that the circles on $BE$ and $CF$ as diameters intersect in a point lying on the altitude of the triangle $ABC$ dropped from $A$ to $BC.$

2011 Iran MO (3rd Round), 4

A variant triangle has fixed incircle and circumcircle. Prove that the radical center of its three excircles lies on a fixed circle and the circle's center is the midpoint of the line joining circumcenter and incenter. [i]proposed by Masoud Nourbakhsh[/i]

2002 Iran Team Selection Test, 7

$S_{1},S_{2},S_{3}$ are three spheres in $\mathbb R^{3}$ that their centers are not collinear. $k\leq8$ is the number of planes that touch three spheres. $A_{i},B_{i},C_{i}$ is the point that $i$-th plane touch the spheres $S_{1},S_{2},S_{3}$. Let $O_{i}$ be circumcenter of $A_{i}B_{i}C_{i}$. Prove that $O_{i}$ are collinear.

2003 China Team Selection Test, 2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

2022 Iran Team Selection Test, 8

In triangle $ABC$, with $AB<AC$, $I$ is the incenter, $E$ is the intersection of $A$-excircle and $BC$. Point $F$ lies on the external angle bisector of $BAC$ such that $E$ and $F$ lieas on the same side of the line $AI$ and $\angle AIF=\angle AEB$. Point $Q$ lies on $BC$ such that $\angle AIQ=90$. Circle $\omega_b$ is tangent to $FQ$ and $AB$ at $B$, circle $\omega_c$ is tangent to $FQ$ and $AC$ at $C$ and both circles pass through the inside of triangle $ABC$. if $M$ is the Midpoint od the arc $BC$, which does not contain $A$, prove that $M$ lies on the radical axis of $\omega_b$ and $\omega_c$. Proposed by Amirmahdi Mohseni

2010 China Team Selection Test, 1

Let $\omega$ be a semicircle and $AB$ its diameter. $\omega_1$ and $\omega_2$ are two different circles, both tangent to $\omega$ and to $AB$, and $\omega_1$ is also tangent to $\omega_2$. Let $P,Q$ be the tangent points of $\omega_1$ and $\omega_2$ to $AB$ respectively, and $P$ is between $A$ and $Q$. Let $C$ be the tangent point of $\omega_1$ and $\omega$. Find $\tan\angle ACQ$.

2008 Sharygin Geometry Olympiad, 3

(V.Yasinsky, Ukraine) Suppose $ X$ and $ Y$ are the common points of two circles $ \omega_1$ and $ \omega_2$. The third circle $ \omega$ is internally tangent to $ \omega_1$ and $ \omega_2$ in $ P$ and $ Q$ respectively. Segment $ XY$ intersects $ \omega$ in points $ M$ and $ N$. Rays $ PM$ and $ PN$ intersect $ \omega_1$ in points $ A$ and $ D$; rays $ QM$ and $ QN$ intersect $ \omega_2$ in points $ B$ and $ C$ respectively. Prove that $ AB \equal{} CD$.

2009 Italy TST, 2

Two circles $O_1$ and $O_2$ intersect at $M,N$. The common tangent line nearer to $M$ of the two circles touches $O_1,O_2$ at $A,B$ respectively. Let $C,D$ be the symmetric points of $A,B$ with respect to $M$ respectively. The circumcircle of triangle $DCM$ intersects circles $O_1$ and $O_2$ at points $E,F$ respectively which are distinct from $M$. Prove that the circumradii of the triangles $MEF$ and $NEF$ are equal.

2022 Iran Team Selection Test, 8

In triangle $ABC$, with $AB<AC$, $I$ is the incenter, $E$ is the intersection of $A$-excircle and $BC$. Point $F$ lies on the external angle bisector of $BAC$ such that $E$ and $F$ lieas on the same side of the line $AI$ and $\angle AIF=\angle AEB$. Point $Q$ lies on $BC$ such that $\angle AIQ=90$. Circle $\omega_b$ is tangent to $FQ$ and $AB$ at $B$, circle $\omega_c$ is tangent to $FQ$ and $AC$ at $C$ and both circles pass through the inside of triangle $ABC$. if $M$ is the Midpoint od the arc $BC$, which does not contain $A$, prove that $M$ lies on the radical axis of $\omega_b$ and $\omega_c$. Proposed by Amirmahdi Mohseni