Found problems: 1679
2013 AMC 10, 23
In triangle $ABC$, $AB=13$, $BC=14$, and $CA=15$. Distinct points $D$, $E$, and $F$ lie on segments $\overline{BC}$, $\overline{CA}$, and $\overline{DE}$, respectively, such that $\overline{AD}\perp\overline{BC}$, $\overline{DE}\perp\overline{AC}$, and $\overline{AF}\perp\overline{BF}$. The length of segment $\overline{DF}$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
${ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 21\qquad\textbf{(C)}\ 24\qquad\textbf{(D}}\ 27\qquad\textbf{(E)}\ 30 $
2013 Math Prize for Girls Olympiad, 2
Say that a (nondegenerate) triangle is [i]funny[/i] if it satisfies the following condition: the altitude, median, and angle bisector drawn from one of the vertices divide the triangle into 4 non-overlapping triangles whose areas form (in some order) a 4-term arithmetic sequence. (One of these 4 triangles is allowed to be degenerate.) Find with proof all funny triangles.
1995 Cono Sur Olympiad, 2
The semicircle with centre $O$ and the diameter $AC$ is divided in two arcs $AB$ and $BC$ with ratio $1: 3$. $M$ is the midpoint of the radium $OC$. Let $T$ be the point of arc $BC$ such that the area of the cuadrylateral $OBTM$ is maximum. Find such area in fuction of the radium.
2011 AMC 12/AHSME, 15
The circular base of a hemisphere of radius $2$ rests on the base of a square pyramid of height $6$. The hemisphere is tangent to the other four faces of the pyramid. What is the edge-length of the base of the pyramid?
$ \textbf{(A)}\ 3\sqrt{2} \qquad
\textbf{(B)}\ \frac{13}{3} \qquad
\textbf{(C)}\ 4\sqrt{2} \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ \frac{13}{2}
$
2014 Iran Team Selection Test, 6
The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $BC$ at $D$.
let $X$ is a point on arc $BC$ from circumcircle of triangle $ABC$ such that if $E,F$ are feet of perpendicular from $X$ on $BI,CI$ and $M$ is midpoint of $EF$ we have $MB=MC$.
prove that $\widehat{BAD}=\widehat{CAX}$
2013 NIMO Problems, 8
The number $\frac{1}{2}$ is written on a blackboard. For a real number $c$ with $0 < c < 1$, a [i]$c$-splay[/i] is an operation in which every number $x$ on the board is erased and replaced by the two numbers $cx$ and $1-c(1-x)$. A [i]splay-sequence[/i] $C = (c_1,c_2,c_3,c_4)$ is an application of a $c_i$-splay for $i=1,2,3,4$ in that order, and its [i]power[/i] is defined by $P(C) = c_1c_2c_3c_4$.
Let $S$ be the set of splay-sequences which yield the numbers $\frac{1}{17}, \frac{2}{17}, \dots, \frac{16}{17}$ on the blackboard in some order. If $\sum_{C \in S} P(C) = \tfrac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Lewis Chen[/i]
Indonesia MO Shortlist - geometry, g6.7
Given triangle $ ABC$ with sidelengths $ a,b,c$. Tangents to incircle of $ ABC$ that parallel with triangle's sides form three small triangle (each small triangle has 1 vertex of $ ABC$). Prove that the sum of area of incircles of these three small triangles and the area of incircle of triangle $ ABC$ is equal to
$ \frac{\pi (a^{2}\plus{}b^{2}\plus{}c^{2})(b\plus{}c\minus{}a)(c\plus{}a\minus{}b)(a\plus{}b\minus{}c)}{(a\plus{}b\plus{}c)^{3}}$
(hmm,, looks familiar, isn't it? :wink: )
2010 CentroAmerican, 6
Let $\Gamma$ and $\Gamma_1$ be two circles internally tangent at $A$, with centers $O$ and $O_1$ and radii $r$ and $r_1$, respectively ($r>r_1$). $B$ is a point diametrically opposed to $A$ in $\Gamma$, and $C$ is a point on $\Gamma$ such that $BC$ is tangent to $\Gamma_1$ at $P$. Let $A'$ the midpoint of $BC$. Given that $O_1A'$ is parallel to $AP$, find the ratio $r/r_1$.
2007 AMC 12/AHSME, 15
The geometric series $ a \plus{} ar \plus{} ar^{2} \plus{} ...$ has a sum of $ 7$, and the terms involving odd powers of $ r$ have a sum of $ 3$. What is $ a \plus{} r$?
$ \textbf{(A)}\ \frac {4}{3}\qquad \textbf{(B)}\ \frac {12}{7}\qquad \textbf{(C)}\ \frac {3}{2}\qquad \textbf{(D)}\ \frac {7}{3}\qquad \textbf{(E)}\ \frac {5}{2}$
2008 AMC 8, 6
In the figure, what is the ratio of the area of the gray squares to the area of the white squares?
[asy]
size((70));
draw((10,0)--(0,10)--(-10,0)--(0,-10)--(10,0));
draw((-2.5,-7.5)--(7.5,2.5));
draw((-5,-5)--(5,5));
draw((-7.5,-2.5)--(2.5,7.5));
draw((-7.5,2.5)--(2.5,-7.5));
draw((-5,5)--(5,-5));
draw((-2.5,7.5)--(7.5,-2.5));
fill((-10,0)--(-7.5,2.5)--(-5,0)--(-7.5,-2.5)--cycle, gray);
fill((-5,0)--(0,5)--(5,0)--(0,-5)--cycle, gray);
fill((5,0)--(7.5,2.5)--(10,0)--(7.5,-2.5)--cycle, gray);
[/asy]
$ \textbf{(A)}\ 3:10 \qquad\textbf{(B)}\ 3:8 \qquad\textbf{(C)}\ 3:7 \qquad\textbf{(D)}\ 3:5 \qquad\textbf{(E)}\ 1:1 $
1978 Austrian-Polish Competition, 4
Let $c\neq 1$ be a positive rational number. Show that it is possible to partition $\mathbb{N}$, the set of positive integers, into two disjoint nonempty subsets $A,B$ so that $x/y\neq c$ holds whenever $x$ and $y$ lie both in $A$ or both in $B$.
2011 Romania Team Selection Test, 3
Given a triangle $ABC$, let $D$ be the midpoint of the side $AC$ and let $M$ be the point that divides the segment $BD$ in the ratio $1/2$; that is, $MB/MD=1/2$. The rays $AM$ and $CM$ meet the sides $BC$ and $AB$ at points $E$ and $F$, respectively. Assume the two rays perpendicular: $AM\perp CM$. Show that the quadrangle $AFED$ is cyclic if and only if the median from $A$ in triangle $ABC$ meets the line $EF$ at a point situated on the circle $ABC$.
2007 AMC 10, 19
A paint brush is swept along both diagonals of a square to produce the symmetric painted area, as shown. Half the area of the square is painted. What is the ratio of the side length of the square to the brush width?
[asy]unitsize(15mm);
defaultpen(linewidth(.8pt));
path P=(-sqrt(2)/2,1)--(0,1-sqrt(2)/2)--(sqrt(2)/2,1);
path Pc=(-sqrt(2)/2,1)--(0,1-sqrt(2)/2)--(sqrt(2)/2,1)--cycle;
path S=(-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle;
fill(S,gray);
for(int i=0;i<4;++i)
{
fill(rotate(90*i)*Pc,white);
draw(rotate(90*i)*P);
}
draw(S);[/asy]$ \textbf{(A)}\ 2\sqrt {2} \plus{} 1 \qquad \textbf{(B)}\ 3\sqrt {2}\qquad \textbf{(C)}\ 2\sqrt {2} \plus{} 2 \qquad \textbf{(D)}\ 3\sqrt {2} \plus{} 1 \qquad \textbf{(E)}\ 3\sqrt {2} \plus{} 2$
2003 Korea Junior Math Olympiad, 3
Consider a triangle $ABC$, inscribed in $O$ and $\angle A < \angle B$. Some point $P$ outside the circle satisfies $$\angle A=\angle PBA =180^{\circ}- \angle PCB$$ Let $D$ be the intersection of line $PB$ and $O$(different from $B$), and $Q$ the intersection of the tangent line of $O$ passing through $A$ and line $CD$. Show that $CQ : AB=AQ^2:AD^2$.
2021 Hong Kong TST, 2
In $\Delta ABC$, $AC=kAB$, with $k>1$. The internal angle bisector of $\angle BAC$ meets $BC$ at $D$. The circle with $AC$ as diameter cuts the extension of $AD$ at $E$. Express $\dfrac{AD}{AE}$ in terms of $k$.
2001 Manhattan Mathematical Olympiad, 3
Is it possible to divide $5$ apples of the same size equally between six children so that no apple will be cut into more than $3$ pieces? (You are allowed to cut an apple into any number of equal pieces).
1987 AMC 12/AHSME, 30
In the figure, $\triangle ABC$ has $\angle A =45^{\circ}$ and $\angle B =30^{\circ}$. A line $DE$, with $D$ on $AB$ and $\angle ADE =60^{\circ}$, divides $\triangle ABC$ into two pieces of equal area. (Note: the figure may not be accurate; perhaps $E$ is on $CB$ instead of $AC$.) The ratio $\frac{AD}{AB}$ is
[asy]
size((220));
draw((0,0)--(20,0)--(7,6)--cycle);
draw((6,6)--(10,-1));
label("A", (0,0), W);
label("B", (20,0), E);
label("C", (7,6), NE);
label("D", (9.5,-1), W);
label("E", (5.9, 6.1), SW);
label("$45^{\circ}$", (2.5,.5));
label("$60^{\circ}$", (7.8,.5));
label("$30^{\circ}$", (16.5,.5));
[/asy]
$ \textbf{(A)}\ \frac{1}{\sqrt{2}} \qquad\textbf{(B)}\ \frac{2}{2+\sqrt{2}} \qquad\textbf{(C)}\ \frac{1}{\sqrt{3}} \qquad\textbf{(D)}\ \frac{1}{\sqrt[3]{6}} \qquad\textbf{(E)}\ \frac{1}{\sqrt[4]{12}} $
Estonia Open Senior - geometry, 2020.2.5
The bisector of the interior angle at the vertex $B$ of the triangle $ABC$ and the perpendicular line on side $BC$ passing through the vertex $C$ intersects at $D$. Let $M$ and $N$ be the midpoints of the segments $BC$ and $BD$, respectively, with $N$ on the side $AC$. Find all possibilities of the angles of the triangles $ABC$, if it is known that $\frac{| AM |}{| BC |}=\frac{|CD|}{|BD|}$.
.
1981 AMC 12/AHSME, 27
In the adjoining figure triangle $ ABC$ is inscribed in a circle. Point $ D$ lies on $ \stackrel{\frown}{AC}$ with $ \stackrel{\frown}{DC} \equal{} 30^\circ$, and point $ G$ lies on $ \stackrel{\frown}{BA}$ with $ \stackrel{\frown}{BG}\, > \, \stackrel{\frown}{GA}$. Side $ AB$ and side $ AC$ each have length equal to the length of chord $ DG$, and $ \angle CAB \equal{} 30^\circ$. Chord $ DG$ intersects sides $ AC$ and $ AB$ at $ E$ and $ F$, respectively. The ratio of the area of $ \triangle AFE$ to the area of $ \triangle ABC$ is
[asy]
size(200);
defaultpen(linewidth(.8pt));
pair C = origin;
pair A = 2.5*dir(75);
pair B = A + 2.5*dir(-75);
path circ =circumcircle(A,B,C);
pair D = waypoint(circ,(7/12));
pair G = waypoint(circ,(1/6));
pair E = intersectionpoint(D--G,A--C);
pair F = intersectionpoint(A--B,D--G);
label("$A$",A,N);
label("$B$",B,SE);
label("$C$",C,SW);
label("$D$",D,SW);
label("$G$",G,NE);
label("$E$",E,NW);
label("$F$",F,W);
label("$30^\circ$",A,12S+E,fontsize(6pt));
draw(A--B--C--cycle);
draw(circ);
draw(Arc(A,0.25,-75,-105));
draw(D--G);[/asy]$ \textbf{(A)}\ \frac {2 \minus{} \sqrt {3}}{3}\qquad \textbf{(B)}\ \frac {2\sqrt {3} \minus{} 3}{3}\qquad \textbf{(C)}\ 7\sqrt {3} \minus{} 12\qquad \textbf{(D)}\ 3\sqrt {3} \minus{} 5\qquad$
$ \textbf{(E)}\ \frac {9 \minus{} 5\sqrt {3}}{3}$
2005 Purple Comet Problems, 21
In the diagram below $ \angle CAB, \angle CBD$, and $\angle CDE$ are all right angles with side lengths $AC = 3$, $BC = 5$, $BD = 12$, and $DE = 84$. The distance from point $E$ to the line $AB$ can be expressed as the ratio of two relatively prime positive integers, $m$ and $n$. Find $m + n$.
[asy]
size(300);
defaultpen(linewidth(0.8));
draw(origin--(3,0)--(0,4)--cycle^^(0,4)--(6,8)--(3,0)--(30,-4)--(6,8));
label("$A$",origin,SW);
label("$B$",(0,4),dir(160));
label("$C$",(3,0),S);
label("$D$",(6,8),dir(80));
label("$E$",(30,-4),E);[/asy]
2008 AMC 12/AHSME, 9
Older television screens have an aspect ratio of $ 4: 3$. That is, the ratio of the width to the height is $ 4: 3$. The aspect ratio of many movies is not $ 4: 3$, so they are sometimes shown on a television screen by 'letterboxing' - darkening strips of equal height at the top and bottom of the screen, as shown. Suppose a movie has an aspect ratio of $ 2: 1$ and is shown on an older television screen with a $ 27$-inch diagonal. What is the height, in inches, of each darkened strip?
[asy]unitsize(1mm);
defaultpen(linewidth(.8pt));
filldraw((0,0)--(21.6,0)--(21.6,2.7)--(0,2.7)--cycle,grey,black);
filldraw((0,13.5)--(21.6,13.5)--(21.6,16.2)--(0,16.2)--cycle,grey,black);
draw((0,2.7)--(0,13.5));
draw((21.6,2.7)--(21.6,13.5));[/asy]$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 2.25 \qquad \textbf{(C)}\ 2.5 \qquad \textbf{(D)}\ 2.7 \qquad \textbf{(E)}\ 3$
2014 AMC 10, 23
A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone?
[asy]
real r=(3+sqrt(5))/2;
real s=sqrt(r);
real Brad=r;
real brad=1;
real Fht = 2*s;
import graph3;
import solids;
currentprojection=orthographic(1,0,.2);
currentlight=(10,10,5);
revolution sph=sphere((0,0,Fht/2),Fht/2);
//draw(surface(sph),green+white+opacity(0.5));
//triple f(pair t) {return (t.x*cos(t.y),t.x*sin(t.y),t.x^(1/n)*sin(t.y/n));}
triple f(pair t) {
triple v0 = Brad*(cos(t.x),sin(t.x),0);
triple v1 = brad*(cos(t.x),sin(t.x),0)+(0,0,Fht);
return (v0 + t.y*(v1-v0));
}
triple g(pair t) {
return (t.y*cos(t.x),t.y*sin(t.x),0);
}
surface sback=surface(f,(3pi/4,0),(7pi/4,1),80,2);
surface sfront=surface(f,(7pi/4,0),(11pi/4,1),80,2);
surface base = surface(g,(0,0),(2pi,Brad),80,2);
draw(sback,rgb(0,1,0));
draw(sfront,rgb(.3,1,.3));
draw(base,rgb(.4,1,.4));
draw(surface(sph),rgb(.3,1,.3));
[/asy]
$ \textbf {(A) } \dfrac {3}{2} \qquad \textbf {(B) } \dfrac {1+\sqrt{5}}{2} \qquad \textbf {(C) } \sqrt{3} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \dfrac {3+\sqrt{5}}{2} $
2000 Harvard-MIT Mathematics Tournament, 28
What is the smallest possible volume to surface ratio of a solid cone with height = $1$ unit?
2001 AIME Problems, 9
In triangle $ABC$, $AB=13,$ $BC=15$ and $CA=17.$ Point $D$ is on $\overline{AB},$ $E$ is on $\overline{BC},$ and $F$ is on $\overline{CA}.$ Let $AD=p\cdot AB,$ $BE=q\cdot BC,$ and $CF=r\cdot CA,$ where $p,$ $q,$ and $r$ are positive and satisfy $p+q+r=2/3$ and $p^2+q^2+r^2=2/5.$ The ratio of the area of triangle $DEF$ to the area of triangle $ABC$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
1993 IMO Shortlist, 8
The vertices $D,E,F$ of an equilateral triangle lie on the sides $BC,CA,AB$ respectively of a triangle $ABC.$ If $a,b,c$ are the respective lengths of these sides, and $S$ the area of $ABC,$ prove that
\[ DE \geq \frac{2 \cdot \sqrt{2} \cdot S}{\sqrt{a^2 + b^2 + c^2 + 4 \cdot \sqrt{3} \cdot S}}. \]