This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2008 Moldova National Olympiad, 12.4

Define the sequence $ (a_p)_{p\ge0}$ as follows: $ a_p\equal{}\displaystyle\frac{\binom p0}{2\cdot 4}\minus{}\frac{\binom p1}{3\cdot5}\plus{}\frac{\binom p2}{4\cdot6}\minus{}\ldots\plus{}(\minus{}1)^p\cdot\frac{\binom pp}{(p\plus{}2)(p\plus{}4)}$. Find $ \lim_{n\to\infty}(a_0\plus{}a_1\plus{}\ldots\plus{}a_n)$.

2020 Jozsef Wildt International Math Competition, W2

Let $\left(a_n\right)_{n\geq1}$ be a sequence of nonnegative real numbers which converges to $a \in \mathbb{R}$. [list=1] [*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+a_nx^n \right)^ndx}$$ [*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+\frac{a_1x+a_3x^3+\cdots+a_{2n-1}x^{2n-1}}{n} \right)^ndx}$$ [/list]

1986 Traian Lălescu, 2.1

Let be a nonnegative integer $ n. $ Find all continuous functions $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ for which the following equation holds: $$ (1+n)\int_0^x f(t) dt =nxf(x) ,\quad\forall x>0. $$

2003 Romania National Olympiad, 2

Let be an odd natural number $ n\ge 3. $ Find all continuous functions $ f:[0,1]\longrightarrow\mathbb{R} $ that satisfy the following equalities. $$ \int_0^1 \left( f\left(\sqrt[k]{x}\right) \right)^{n-k} dx=k/n,\quad\forall k\in\{ 1,2,\ldots ,n-1\} $$ [i]Titu Andreescu[/i]

2004 Nicolae Coculescu, 2

Let bet a sequence $\left( a_n \right)_{n\ge 1} $ with $ a_1=1 $ and defined as $ a_n=\sqrt[n]{1+na_{n-1}} . $ Show that $ \left( a_n \right)_{n\ge 1} $ is convergent and determine its limit. [i]Florian Dumitrel[/i]

2020 Jozsef Wildt International Math Competition, W38

Let $(a_n)_{n\in\mathbb N}$ be a sequence, given by the recurrence: $$ma_{n+1}+(m-2)a_n-a_{n-1}=0$$ where $m\in\mathbb R$ is a parameter and the first two terms of $a_n$ are fixed known real numbers. Find $m\in\mathbb R$, so that $$\lim_{n\to\infty}a_n=0$$ [i]Proposed by Laurențiu Modan[/i]

2003 Gheorghe Vranceanu, 2

Let be a real number $ a $ and a function $ f:[a,\infty )\longrightarrow\mathbb{R} $ that is continuous at $ a. $ Prove that $ f $ is primitivable on $ (a,\infty ) $ if and only if $ f $ is primitivable on $ [a,\infty ) . $

1981 Miklós Schweitzer, 6

Let $ f$ be a strictly increasing, continuous function mapping $ I=[0,1]$ onto itself. Prove that the following inequality holds for all pairs $ x,y \in I$: \[ 1-\cos (xy) \leq \int_0^xf(t) \sin (tf(t))dt + \int_0^y f^{-1}(t) \sin (tf^{-1}(t)) dt .\] [i]Zs. Pales[/i]

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 4

Let $\alpha,\ \beta$ be real numbers. Find the ranges of $\alpha,\ \beta$ such that the improper integral $\int_1^{\infty} \frac{x^{\alpha}\ln x}{(1+x)^{\beta}}$ converges.

2012 Centers of Excellency of Suceava, 4

Let be two real numbers $ a<b $ and a differentiable function $ f:[a,b]\longrightarrow\mathbb{R} $ that has a bounded derivative. Show that if $ \frac{f(b)-f(a)}{b-a} $ is equal to the global supremum or infimum of $ f', $ then $ f $ is polynomial with degree $ 1. $ [i]Cătălin Țigăeru[/i]

2006 Miklós Schweitzer, 8

let $f(x) = \sum_{n=0}^{\infty} 2^{-n} ||2^n x||$ , where ||x|| is the distance between x and the closest integer to x. Are the level sets $\{ x \in [0,1] : f(x)=y \}$ Lebesgue measurable for almost all $y \in f(R)$?

2019 Miklós Schweitzer, 8

Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function such that $f(x+t) - f(x)$ is locally integrable for every $t$ as a function of $x$. Prove that $f$ is locally integrable.

2003 IMC, 6

Let $ p=\sum\limits_{k=0}^n a_kX^k\in R[X] $ a polynomial such that all his roots lie in the half plane $ \{z\in C| Re(z)<0 \}. $ Prove that $ a_ka_{k+3}<a_{k+1}a_{k+2}, $ for every k=0,1,2...,n-3.

1962 Putnam, B3

Let $S$ be a convex region in the euclidean plane containing the origin. Assume that every ray from the origin has at least one point outside $S$. Prove that $S$ is bounded.

2012 Centers of Excellency of Suceava, 3

Let be a continuous function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ that has a root, and for which the line $ y=0 $ in the Cartesian plane is an horizontal asymptote. Show that $ f $ is bounded and touches its boundaries. [i]Mihai Piticari[/i] and [i]Vladimir Cerbu[/i]

2000 Romania National Olympiad, 4

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a function that satisfies the conditions: $ \text{(i)}\quad \lim_{x\to\infty} (f\circ f) (x) =\infty =-\lim_{x\to -\infty} (f\circ f) (x) $ $ \text{(ii)}\quad f $ has Darboux’s property [b]a)[/b] Prove that the limits of $ f $ at $ \pm\infty $ exist. [b]b)[/b] Is possible for the limits from [b]a)[/b] to be finite?

1998 Vietnam National Olympiad, 1

Let $a\geq 1$ be a real number. Put $x_{1}=a,x_{n+1}=1+\ln{(\frac{x_{n}^{2}}{1+\ln{x_{n}}})}(n=1,2,...)$. Prove that the sequence $\{x_{n}\}$ converges and find its limit.

2010 Victor Vâlcovici, 1

Let $ \left( a_n\right)_{n\ge 1} $ be a sequence defined by $ a_1>0 $ and $ \frac{a_{n+1}}{a}=\frac{a_n}{a}+\frac{a}{a_n} , $ with $ a>0. $ Calculate $ \lim_{n\to\infty} \frac{a_n}{\sqrt{n+a}} . $ [i]Florin Rotaru[/i]

2013 Taiwan TST Round 1, 2

Let $f$ and $g$ be two nonzero polynomials with integer coefficients and $\deg f>\deg g$. Suppose that for infinitely many primes $p$ the polynomial $pf+g$ has a rational root. Prove that $f$ has a rational root.

1967 Miklós Schweitzer, 4

Let $ a_1,a_2,...,a_N$ be positive real numbers whose sum equals $ 1$. For a natural number $ i$, let $ n_i$ denote the number of $ a_k$ for which $ 2^{1-i} \geq a_k \geq 2^{-i}$ holds. Prove that \[ \sum_{i=1}^{\infty} \sqrt{n_i2^{-i}} \leq 4+\sqrt{\log_2 N}.\] [i]L. Leinder[/i]

2008 Alexandru Myller, 3

Find the nondecreasing functions $ f:[0,1]\rightarrow\mathbb{R} $ that satisfy $$ \left| \int_0^1 f(x)e^{nx} dx\right|\le 2008 , $$ for any nonnegative integer $ n. $ [i]Mihai Piticari[/i]

2024 District Olympiad, P4

Let $f:[0,\infty)\to\mathbb{R}$ be a differentiable function, with a continous derivative. Given that $f(0)=0$ and $0\leqslant f'(x)\leqslant 1$ for every $x>0$ prove that\[\frac{1}{n+1}\int_0^af(t)^{2n+1}\mathrm{d}t\leqslant\left(\int_0^af(t)^n\mathrm{d}t\right)^2,\]for any positive integer $n{}$ and real number $a>0.$

1966 Miklós Schweitzer, 6

A sentence of the following type if often heard in Hungarian weather reports: "Last night's minimum temperatures took all values between $ \minus{}3$ degrees and $ \plus{}5$ degrees." Show that it would suffice to say, "Both $ \minus{}3$ degrees and $ \plus{}5$ degrees occurred among last night's minimum temperatures." (Assume that temperature as a two-variable function of place and time is continuous.) [i]A.Csaszar[/i]

2021 Brazil Undergrad MO, Problem 4

For every positive integeer $n>1$, let $k(n)$ the largest positive integer $k$ such that there exists a positive integer $m$ such that $n = m^k$. Find $$lim_{n \rightarrow \infty} \frac{\sum_{j=2}^{j=n+1}{k(j)}}{n}$$

KoMaL A Problems 2024/2025, A. 905

We say that a strictly increasing sequence of positive integers $n_1, n_2,\ldots$ is [i]non-decelerating[/i] if $n_{k+1}-n_k\le n_{k+2}-n_{k+1}$ holds for all positive integers $k$. We say that a strictly increasing sequence $n_1, n_2, \ldots$ is [i]convergence-inducing[/i], if the following statement is true for all real sequences $a_1, a_2, \ldots$: if subsequence $a_{m+n_1}, a_{m+n_2}, \ldots$ is convergent and tends to $0$ for all positive integers $m$, then sequence $a_1, a_2, \ldots$ is also convergent and tends to $0$. Prove that a non-decelerating sequence $n_1, n_2,\ldots$ is convergence-inducing if and only if sequence $n_2-n_1$, $n_3-n_2$, $\ldots$ is bounded from above. [i]Proposed by András Imolay[/i]