Found problems: 884
2003 China Team Selection Test, 1
Let $S$ be the set of points inside and on the boarder of a regular haxagon with side length 1. Find the least constant $r$, such that there exists one way to colour all the points in $S$ with three colous so that the distance between any two points with same colour is less than $r$.
1954 Miklós Schweitzer, 9
[b]9.[/b] Lep $p$ be a connected non-closed broken line without self-intersection in the plane $\varphi $. Prove that if $v$ is a non-zero vector in $\varphi $ and $p$ has a commom point with the broken line $p+v$, then $p$ has a common point with the broken line $p+\alpha v$ too, where $\alpha =\frac{1}{n}$ and $n$ is a positive integer. Does a similar statemente hold for other positive values of $\alpha$? ($p+v$ denotes the broken line obtained from $p$ through displacemente by the vector $v$.) [b](G. 1)[/b]
2024 VJIMC, 3
Let $a_1>0$ and for $n \ge 1$ define
\[a_{n+1}=a_n+\frac{1}{a_1+a_2+\dots+a_n}.\]
Prove that
\[\lim_{n \to \infty} \frac{a_n^2}{\ln n}=2.\]
2023 Romania National Olympiad, 3
Let $a,b \in \mathbb{R}$ with $a < b,$ 2 real numbers. We say that $f: [a,b] \rightarrow \mathbb{R}$ has property $(P)$ if there is an integrable function on $[a,b]$ with property that
\[
f(x) - f \left( \frac{x + a}{2} \right) = f \left( \frac{x + b}{2} \right) - f(x) , \forall x \in [a,b].
\]
Show that for all real number $t$ there exist a unique function $f:[a,b] \rightarrow \mathbb{R}$ with property $(P),$ such that $\int_{a}^{b} f(x) \text{dx} = t.$
2024 District Olympiad, P4
Consider the functions $f,g:\mathbb{R}\to\mathbb{R}$ such that $f{}$ is continous. For any real numbers $a<b<c$ there exists a sequence $(x_n)_{n\geqslant 1}$ which converges to $b{}$ and for which the limit of $g(x_n)$ as $n{}$ tends to infinity exists and satisfies \[f(a)<\lim_{n\to\infty}g(x_n)<f(c).\][list=a]
[*]Give an example of a pair of such functions $f,g$ for which $g{}$ is discontinous at every point.
[*]Prove that if $g{}$ is monotonous, then $f=g.$
[/list]
1988 Greece National Olympiad, 4
Let $a_1=5$ and $a_{n+1}= a^2_{n}-2$ for any $n=1,2,...$.
a) Find $\lim_{n \rightarrow \infty}\frac{a_{n+1}}{a_1a_2 ...a_{n}}$
b) Find $\lim_{\nu \rightarrow \infty}\left(\frac{1}{a_1}+\frac{1}{a_1a_2}+...+\frac{1}{a_1a_2 ...a_{\nu}}\right)$
2014 District Olympiad, 1
For each positive integer $n$ we consider the function $f_{n}:[0,n]\rightarrow{\mathbb{R}}$ defined by $f_{n}(x)=\arctan{\left(\left\lfloor x\right\rfloor \right)} $, where $\left\lfloor x\right\rfloor $ denotes the floor of the real number $x$. Prove that $f_{n}$ is a Riemann Integrable function and find $\underset{n\rightarrow\infty}{\lim}\frac{1}{n}\int_{0}^{n}f_{n}(x)\mathrm{d}x.$
2010 Romania National Olympiad, 4
Let $a\in \mathbb{R}_+$ and define the sequence of real numbers $(x_n)_n$ by $x_1=a$ and $x_{n+1}=\left|x_n-\frac{1}{n}\right|,\ n\ge 1$. Prove that the sequence is convergent and find it's limit.
2011 Putnam, A6
Let $G$ be an abelian group with $n$ elements, and let \[\{g_1=e,g_2,\dots,g_k\}\subsetneq G\] be a (not necessarily minimal) set of distinct generators of $G.$ A special die, which randomly selects one of the elements $g_1,g_2,\dots,g_k$ with equal probability, is rolled $m$ times and the selected elements are multiplied to produce an element $g\in G.$
Prove that there exists a real number $b\in(0,1)$ such that \[\lim_{m\to\infty}\frac1{b^{2m}}\sum_{x\in G}\left(\mathrm{Prob}(g=x)-\frac1n\right)^2\] is positive and finite.
2021 Miklós Schweitzer, 5
Let $f(x)=\frac{1+\cos(2 \pi x)}{2}$, for $x \in \mathbb{R}$, and $f^n=\underbrace{ f \circ \cdots \circ f}_{n}$. Is it true that for Lebesgue almost every $x$, $\lim_{n \to \infty} f^n(x)=1$?
2019 AMC 12/AHSME, 22
Define a sequence recursively by $x_0=5$ and
\[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\]
for all nonnegative integers $n.$ Let $m$ be the least positive integer such that
\[x_m\leq 4+\frac{1}{2^{20}}.\] In which of the following intervals does $m$ lie?
$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]$
2007 IberoAmerican Olympiad For University Students, 3
Let $f:\mathbb{R}\to\mathbb{R}^+$ be a continuous and periodic function. Prove that for all $\alpha\in\mathbb{R}$ the following inequality holds:
$\int_0^T\frac{f(x)}{f(x+\alpha)}dx\ge T$,
where $T$ is the period of $f(x)$.
1986 Miklós Schweitzer, 8
Let $a_0=0$, $a_1, \ldots, a_k$ and $b_1, \ldots, b_k$ be arbitrary real numbers.
(i) Show that for all sufficiently large $n$ there exist polynomials $p_n$ of degree at most $n$ for which
$$p_n^{(i)} (-1)=a_i,\,\,\,\,\, p_n^{(i)} (1)=b_i,\,\,\,\,\, i=0, 1, \ldots, k$$
and
$$\max_{|x|\leq 1} |p_n (x)|\leq \frac{c}{n^2}\,\,\,\,\,\,\,\,\,\, (*)$$
where the constant $c$ depends only on the numbers $a_i, b_i$.
(ii) Prove that, in general, (*) cannot be replaced by the relation
$$\lim_{n\to\infty} n^2\cdot \max_{|x|\leq 1} |p_n (x)| = 0$$
[J. Szabados]
2019 Ramnicean Hope, 1
Calculate $ \lim_{n\to\infty }\sum_{t=1}^n\frac{1}{n+t+\sqrt{n^2+nt}} . $
[i]D.M. Bătinețu[/i] and [i]Neculai Stanciu[/i]
1997 Traian Lălescu, 4
Compute the limit: \[ \lim_{n\to\infty} \frac{1}{n^2}\sum\limits_{1\leq i <j\leq n}\sin \frac{i+j}{n}\].
1994 IMC, 2
Let $f\colon \mathbb R ^2 \rightarrow \mathbb R$ be given by $f(x,y)=(x^2-y^2)e^{-x^2-y^2}$.
a) Prove that $f$ attains its minimum and its maximum.
b) Determine all points $(x,y)$ such that $\frac{\partial f}{\partial x}(x,y)=\frac{\partial f}{\partial y}(x,y)=0$ and determine for which of them $f$ has global or local minimum or maximum.
Today's calculation of integrals, 764
Find $\lim_{n\to\infty} \int_0^{\pi} e^{x}|\sin nx|dx.$
1996 Romania National Olympiad, 2
a) Let $f_1,f_2,\ldots,f_n: \mathbb{R} \to \mathbb{R}$ be periodic functions such that the function $f: \mathbb{R} \to \mathbb{R},$ $f=f_1+f_2+\ldots+f_n$ has finite limit at $\infty.$ Prove that $f$ is constant.
b) If $a_1,a_2,a_3$ are real numbers such that $a_1 \cos(a_1x) + a_2 \cos (a_2x) + a_3 \cos(a_3x) \ge 0$ for every $x \in \mathbb{R},$ then $a_1a_2a_3=0.$
1954 Miklós Schweitzer, 1
[b]1.[/b] Given a positive integer $r>1$, prove that there exists an infinite number of infinite geometrical series, with positive terms, having the sum 1 and satisfying the following condition: for any positive real numbers $S_{1},S_{2},\dots,S_{r}$ such that $S_{1}+S_{2}+\dots+S_{r}=1$, any of these infinite geometrical series can be divided into $r$ infinite series(not necessarily geometrical) having the sums $S_{1},S_{2},\dots,S_{r}$, respectively. [b](S. 6)[/b]
2014 Putnam, 6
Let $f:[0,1]\to\mathbb{R}$ be a function for which there exists a constant $K>0$ such that $|f(x)-f(y)|\le K|x-y|$ for all $x,y\in [0,1].$ Suppose also that for each rational number $r\in [0,1],$ there exist integers $a$ and $b$ such that $f(r)=a+br.$ Prove that there exist finitely many intervals $I_1,\dots,I_n$ such that $f$ is a linear function on each $I_i$ and $[0,1]=\bigcup_{i=1}^nI_i.$
1982 Miklós Schweitzer, 5
Find a perfect set $ H \subset [0,1]$ of positive measure and a continuous function $ f$ defined on $ [0,1]$ such that for any twice differentiable function $ g$ defined on $ [0,1]$, the set $ \{ x \in H : \;f(x)\equal{}g(x)\ \}$ is finite.
[i]M. Laczkovich[/i]
2007 Grigore Moisil Intercounty, 4
Let $ \left( x_n \right)_{n\ge 1} $ be a sequence of positive real numbers, verifying the inequality $ x_n\le \frac{x_{n-1}+x_{n-2}}{2} , $ for any natural number $ n\ge 3. $
Show that $ \left( x_n \right)_{n\ge 1} $ is convergent.
1980 Miklós Schweitzer, 1
For a real number $ x$, let $ \|x \|$ denote the distance between $ x$ and the closest integer. Let $ 0 \leq x_n <1 \; (n\equal{}1,2,\ldots)\ ,$ and let $ \varepsilon >0$. Show that there exist infinitely many pairs $ (n,m)$ of indices such that $ n \not\equal{}
m$ and \[ \|x_n\minus{}x_m \|< \min \left( \varepsilon , \frac{1}{2|n\minus{}m|} \right).\]
[i]V. T. Sos[/i]
2025 District Olympiad, P3
Let $f:[0,\infty)\rightarrow [0,\infty)$ be a continuous and bijective function, such that $$\lim_{x\rightarrow\infty}\frac{f^{-1}(f(x)/x)}{x}=1.$$
[list=a]
[*] Show that $\lim_{x\rightarrow\infty}\frac{f(x)}{x}=\infty$ and $\lim_{x\rightarrow\infty}\frac{f^{-1}(ax)}{f^{-1}(x)}=1$ for any $a>0$.
[*] Give an example of function which satisfies the hypothesis.
2007 Nicolae Păun, 3
Construct a function $ f:[0,1]\longrightarrow\mathbb{R} $ that is primitivable, bounded, and doesn't touch its bounds.
[i]Dorian Popa[/i]