This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2004 Romania National Olympiad, 4

(a) Build a function $f : \mathbb R \to \mathbb R_+$ with the property $\left( \mathcal P \right)$, i.e. all $x \in \mathbb Q$ are local, strict minimum points. (b) Build a function $f : \mathbb Q \to \mathbb R_+$ such that every point is a local, strict minimum point and such that $f$ is unbounded on $I \cap \mathbb Q$, where $I$ is a non-degenerate interval. (c) Let $f: \mathbb R \to \mathbb R_+$ be a function unbounded on every $I \cap \mathbb Q$, where $I$ is a non-degenerate interval. Prove that $f$ doesn't have the property $\left( \mathcal P \right)$.

2021 Brazil Undergrad MO, Problem 2

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ from $C^2$ (id est, $f$ is twice differentiable and $f''$ is continuous.) such that for every real number $t$ we have $f(t)^2=f(t \sqrt{2})$.

2008 Miklós Schweitzer, 5

Let $A$ be an infinite subset of the set of natural numbers, and denote by $\tau_A(n)$ the number of divisors of $n$ in $A$. Construct a set $A$ for which $$\sum_{n\le x}\tau_A(n)=x+O(\log\log x)$$ and show that there is no set for which the error term is $o(\log\log x)$ in the above formula. (translated by Miklós Maróti)

2015 VJIMC, 1

[b]Problem 1[/b] Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on $\mathbb{R}$. Prove that there exists $x \in [0, 1]$ such that $$\frac{4}{\pi} ( f(1) - f(0) ) = (1+x^2) f'(x) \ .$$

2002 SNSB Admission, 4

Present a family of subsets of the plane such that each one of its members is Lebesgue measurable, each one of its members intersects any circle, and the set of Lebesgue measures of all its members is the set of nonnegative real numbers.

2023 SEEMOUS, P4

Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous, strictly decreasing function such that $f([0,1])\subseteq[0,1]$. [list=i] [*]For all positive integers $n{}$ prove that there exists a unique $a_n\in(0,1)$, solution of the equation $f(x)=x^n$. Moreover, if $(a_n){}$ is the sequence defined as above, prove that $\lim_{n\to\infty}a_n=1$. [*]Suppose $f$ has a continuous derivative, with $f(1)=0$ and $f'(1)<0$. For any $x\in\mathbb{R}$ we define \[F(x)=\int_x^1f(t) \ dt.\]Let $\alpha{}$ be a real number. Study the convergence of the series \[\sum_{n=1}^\infty F(a_n)^\alpha.\] [/list]

MIPT student olimpiad spring 2022, 1

Sequence of uniformly continuous functions $f_n:R \to R$ uniformly converges to a function $f:R\to R$. Can we say that $f$ is uniformly continuous?

2006 Romania National Olympiad, 4

Let $f: [0,1]\to\mathbb{R}$ be a continuous function such that \[ \int_{0}^{1}f(x)dx=0. \] Prove that there is $c\in (0,1)$ such that \[ \int_{0}^{c}xf(x)dx=0. \] [i]Cezar Lupu, Tudorel Lupu[/i]

2024 District Olympiad, P4

Consider the functions $f,g:\mathbb{R}\to\mathbb{R}$ such that $f{}$ is continous. For any real numbers $a<b<c$ there exists a sequence $(x_n)_{n\geqslant 1}$ which converges to $b{}$ and for which the limit of $g(x_n)$ as $n{}$ tends to infinity exists and satisfies \[f(a)<\lim_{n\to\infty}g(x_n)<f(c).\][list=a] [*]Give an example of a pair of such functions $f,g$ for which $g{}$ is discontinous at every point. [*]Prove that if $g{}$ is monotonous, then $f=g.$ [/list]

1985 Traian Lălescu, 1.2

Calculate $ \sum_{i=2}^{\infty}\frac{i^2-2}{i!} . $

1976 Miklós Schweitzer, 8

Prove that the set of all linearly combinations (with real coefficients) of the system of polynomials $ \{ x^n\plus{}x^{n^2} \}_{n\equal{}0}^{\infty}$ is dense in $ C[0,1]$. [i]J. Szabados[/i]

2003 Romania National Olympiad, 3

Let be two functions $ f,g:\mathbb{R}_{\ge 0 }\longrightarrow\mathbb{R} $ having that properties that $ f $ is continuous, $ g $ is nondecreasing and unbounded, and for any sequence of rational numbers $ \left( x_n \right)_{n\ge 1} $ that diverges to $ \infty , $ we have $$ 1=\lim_{n\to\infty } f\left( x_n \right) g\left( x_n \right) . $$ Prove that $1=\lim_{x\to\infty } f\left( x \right) g\left( x \right) . $ [i]Radu Gologan[/i]

1982 Putnam, A2

For positive real $x$, let $$B_n(x)=1^x+2^x+\ldots+n^x.$$Prove or disprove the convergence of $$\sum_{n=2}^\infty\frac{B_n(\log_n2)}{(n\log_2n)^2}.$$

2016 Romania National Olympiad, 3

Let be a real number $ a, $ and a function $ f:\mathbb{R}_{>0 }\longrightarrow\mathbb{R}_{>0 } . $ Show that the following relations are equivalent. $ \text{(i)}\quad\varepsilon\in\mathbb{R}_{>0 } \implies\left( \lim_{x\to\infty } \frac{f(x)}{x^{a+\varepsilon }} =0\wedge \lim_{x\to\infty } \frac{f(x)}{x^{a-\varepsilon }} =\infty \right) $ $ \text{(ii)}\quad\lim_{x\to\infty } \frac{\ln f(x)}{\ln x } =a $

2007 Gheorghe Vranceanu, 3

Find all functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that admit a primitive $ F $ defined as $ F(x)=\left\{\begin{matrix} f(x)/x, & x\neq 0 \\ 2007, & x=0 \end{matrix}\right. . $

2014 Contests, 2

Let $(X,d)$ be a nonempty connected metric space such that the limit of every convergent sequence, is a term of that sequence. Prove that $X$ has exactly one element.

2005 VTRMC, Problem 5

Define $f(x,y)=\frac{xy}{x^2+y^2\ln(x^2)^2}$ if $x\ne0$, and $f(0,y)=0$ if $y\ne0$. Determine whether $\lim_{(x,y)\to(0,0)}f(x,y)$ exists, and find its value is if the limit does exist.

1997 IMC, 1

Let $\{\epsilon_n\}^\infty_{n=1}$ be a sequence of positive reals with $\lim\limits_{n\rightarrow+\infty}\epsilon_n = 0$. Find \[ \lim\limits_{n\rightarrow\infty}\dfrac{1}{n}\sum\limits^{n}_{k=1}\ln\left(\dfrac{k}{n}+\epsilon_n\right) \]

2020 IMC, 8

Compute $\lim\limits_{n \to \infty} \frac{1}{\log \log n} \sum\limits_{k=1}^n (-1)^k \binom{n}{k} \log k.$

2014 District Olympiad, 4

Let $f\colon\mathbb{N}\rightarrow\mathbb{N}^{\ast}$ be a strictly increasing function. Prove that: [list=a] [*]There exists a decreasing sequence of positive real numbers, $(y_{n})_{n\in\mathbb{N}}$, converging to $0$, such that $y_{n}\leq2y_{f(n)}$, for all $n\in\mathbb{N}$. [*]If $(x_{n})_{n\in\mathbb{N}}$ is a decreasing sequence of real numbers, converging to $0$, then there exists a decreasing sequence of real numbers $(y_{n})_{n\in\mathbb{N}}$, converging to $0$, such that $x_{n}\leq y_{n} \leq2y_{f(n)}$, for all $n\in\mathbb{N}$.[/list]

2021 Miklós Schweitzer, 3

Let $I \subset \mathbb{R}$ be a nonempty open interval and let $f: I \cap \mathbb{Q} \to \mathbb{R}$ be a function such that for all $x, y \in I \cap \mathbb{Q}$, \[ 4f\left(\frac{3x + y}{4}\right)+ 4f\left(\frac{x + 3y}{4}\right) \le f(x) + 6f\left(\frac{x + y}{2}\right)+ f(y). \] Show that $f$ can be continuously extended to $I$.

1955 Miklós Schweitzer, 2

[b]2.[/b] Let $f_{1}(x), \dots , f_{n}(x)$ be Lebesgue integrable functions on $[0,1]$, with $\int_{0}^{1}f_{1}(x) dx= 0$ $ (i=1,\dots ,n)$. Show that, for every $\alpha \in (0,1)$, there existis a subset $E$ of $[0,1]$ with measure $\alpha$, such that $\int_{E}f_{i}(x)dx=0$. [b](R. 17)[/b]

2013 Miklós Schweitzer, 8

Let ${f : \Bbb{R} \rightarrow \Bbb{R}}$ be a continuous and strictly increasing function for which \[ \displaystyle f^{-1}\left(\frac{f(x)+f(y)}{2}\right)(f(x)+f(y)) =(x+y)f\left(\frac{x+y}{2}\right) \] for all ${x,y \in \Bbb{R}} ({f^{-1}}$ denotes the inverse of ${f})$. Prove that there exist real constants ${a \neq 0}$ and ${b}$ such that ${f(x)=ax+b}$ for all ${x \in \Bbb{R}}.$ [i]Proposed by Zoltán Daróczy[/i]

2010 Laurențiu Panaitopol, Tulcea, 1

Show that if $ \left( s_n \right)_{n\ge 0} $ is a sequence that tends to $ 6, $ then, the sequence $$ \left( \sqrt[3]{s_n+\sqrt[3]{s_{n-1}+\sqrt[3]{s_{n-2}+\sqrt[3]{\cdots +\sqrt[3]{s_0}}}}} \right)_{n\ge 0} $$ tends to $ 2. $ [i]Mihai Bălună[/i]

Gheorghe Țițeica 2024, P4

Let $f:\mathbb{R}\rightarrow (0,\infty)$ be continuous function of period $1$. Prove that for any $a\in\mathbb{R}$ $$\int_0^1\frac{f(x)}{f(x+a)}dx\geq 1.$$