This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2015 VJIMC, 4

[b]Problem 4[/b] Find all continuously differentiable functions $ f : \mathbb{R} \rightarrow \mathbb{R} $, such that for every $a \geq 0$ the following relation holds: $$\iiint \limits_{D(a)} xf \left( \frac{ay}{\sqrt{x^2+y^2}} \right) \ dx \ dy\ dz = \frac{\pi a^3}{8} (f(a) + \sin a -1)\ , $$ where $D(a) = \left\{ (x,y,z)\ :\ x^2+y^2+z^2 \leq a^2\ , \ |y|\leq \frac{x}{\sqrt{3}} \right\}\ .$

2007 Nicolae Păun, 3

In the following exercise, $ C_G (e) $ denotes the centralizer of the element $ e $ in the group $ G. $ [b]a)[/b] Prove that $ \max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right| <\frac{n!}{2} , $ for any natural number $ n\ge 4. $ [b]b)[/b] Show that $ \lim_{n\to\infty} \left(\frac{1}{n!}\cdot\max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right|\right) =0. $ [i]Alexandru Cioba[/i]

2010 Contests, 2

Calculate the sum of the series $\sum_{-\infty}^{\infty}\frac{\sin^33^k}{3^k}$.

1995 IMC, 2

Let $f$ be a continuous function on $[0,1]$ such that for every $x\in [0,1]$, we have $\int_{x}^{1}f(t)dt \geq\frac{1-x^{2}}{2}$. Show that $\int_{0}^{1}f(t)^{2}dt \geq \frac{1}{3}$.

2021 Science ON all problems, 3

$\textbf{(a)}$ Let $a,b \in \mathbb{R}$ and $f,g :\mathbb{R}\rightarrow \mathbb{R}$ be differentiable functions. Consider the function $$h(x)=\begin{vmatrix} a &b &x\\ f(a) &f(b) &f(x)\\ g(a) &g(b) &g(x)\\ \end{vmatrix}$$ Prove that $h$ is differentiable and find $h'$. \\ \\ $\textbf{(b)}$ Let $n\in \mathbb{N}$, $n\geq 3$, take $n-1$ pairwise distinct real numbers $a_1<a_2<\dots <a_{n-1}$ with sum $\sum_{i=1}^{n-1}a_i = 0$, and consider $n-1$ functions $f_1,f_2,...f_{n-1}:\mathbb{R}\rightarrow \mathbb{R}$, each of them $n-2$ times differentiable over $\mathbb{R}$. Prove that there exists $a\in (a_1,a_{n-1})$ and $\theta, \theta_1,...,\theta_{n-1}\in \mathbb{R}$, not all zero, such that $$\sum_{k=1}^{n-1} \theta_k a_k=\theta a$$ and, at the same time, $$\sum_{k=1}^{n-1}\theta_kf_i(a_k)=\theta f_i^{(n-2)}(a)$$ for all $i\in\{1,2...,n-1\} $. \\ \\ [i](Sergiu Novac)[/i]

2019 IMC, 3

Let $f:(-1,1)\to \mathbb{R}$ be a twice differentiable function such that $$2f’(x)+xf''(x)\geqslant 1 \quad \text{ for } x\in (-1,1).$$ Prove that $$\int_{-1}^{1}xf(x)dx\geqslant \frac{1}{3}.$$ [i]Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan and Karim Rakhimov, Scuola Normale Superiore and National University of Uzbekistan[/i]

2024 CIIM, 6

Given a real number $x$, define the series \[ S(x) = \sum_{n=1}^{\infty} \{n! \cdot x\}, \] where $\{s\} = s - \lfloor s \rfloor$ is the fractional part of the number $s$. Determine if there exists an irrational number $x$ for which the series $S(x)$ converges.

2011 Miklós Schweitzer, 7

prove that for any sequence of nonnegative numbers $(a_n)$, $$\liminf_{n\to\infty} (n^2(4a_n(1-a_{n-1})-1))\leq\frac{1}{4}$$

2011 Putnam, A6

Let $G$ be an abelian group with $n$ elements, and let \[\{g_1=e,g_2,\dots,g_k\}\subsetneq G\] be a (not necessarily minimal) set of distinct generators of $G.$ A special die, which randomly selects one of the elements $g_1,g_2,\dots,g_k$ with equal probability, is rolled $m$ times and the selected elements are multiplied to produce an element $g\in G.$ Prove that there exists a real number $b\in(0,1)$ such that \[\lim_{m\to\infty}\frac1{b^{2m}}\sum_{x\in G}\left(\mathrm{Prob}(g=x)-\frac1n\right)^2\] is positive and finite.

2013 China Team Selection Test, 1

Let $p$ be a prime number and $a, k$ be positive integers such that $p^a<k<2p^a$. Prove that there exists a positive integer $n$ such that \[n<p^{2a}, C_n^k\equiv n\equiv k\pmod {p^a}.\]

MIPT student olimpiad autumn 2024, 3

$\exists ? f: R\to R$ continuos function that: $\forall x_0\in R \lim\limits_{x \to x_0} \frac{|f(x)-f(x_0)|}{|x-x_0|}=+\infty$

2005 Grigore Moisil Urziceni, 2

Let be a function $ f:\mathbb{R}\longrightarrow\mathbb{R}_{\ge 0} $ that admits primitives and such that $ \lim_{x\to 0 } \frac{f(x)}{x} =0. $ Prove that the function $ g:\mathbb{R}\longrightarrow\mathbb{R} , $ defined as $$ g(x)=\left\{ \begin{matrix} f(x)/x ,&\quad x\neq 0\\ 0,& \quad x=0 \end{matrix} \right. , $$ is primitivable.

2001 Miklós Schweitzer, 6

Let $I\subset \mathbb R$ be a non-empty open interval, $\varepsilon\geq 0$ and $f\colon I\rightarrow\mathbb R$ a function satisfying the $$f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+\varepsilon t(1-t)|x-y|$$ inequality for all $x,y\in I$ and $t\in [0,1]$. Prove that there exists a convex $g\colon I\rightarrow\mathbb R$ function, such that the function $l :=f-g$ has the $\varepsilon$-Lipschitz property, that is $$|l(x)-l(y)|\leq \varepsilon|x-y|\text{ for all }x,y\in I$$

1988 Putnam, B3

For every $n$ in the set $\mathrm{N} = \{1,2,\dots \}$ of positive integers, let $r_n$ be the minimum value of $|c-d\sqrt{3}|$ for all nonnegative integers $c$ and $d$ with $c+d=n$. Find, with proof, the smallest positive real number $g$ with $r_n \leq g$ for all $n \in \mathbb{N}$.

2023 District Olympiad, P3

Let $f:[a,b]\to[a,b]$ be a continuous function. It is known that there exist $\alpha,\beta\in (a,b)$ such that $f(\alpha)=a$ and $f(\beta)=b$. Prove that the function $f\circ f$ has at least three fixed points.

2014 IMS, 8

Is $\sum_{n=1}^{+\infty}\frac{\cos n}{n}(1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}})$ convergent? why?

2019 VJIMC, 2

A triplet of polynomials $u,v,w \in \mathbb{R}[x,y,z]$ is called [i]smart[/i] if there exists polynomials $P,Q,R\in \mathbb{R}[x,y,z]$ such that the following polynomial identity holds :$$u^{2019}P +v^{2019 }Q+w^{2019} R=2019$$ a) Is the triplet of polynomials $$u=x+2y+3 , \;\;\;\; v=y+z+2, \;\;\;\;\;w=x+y+z$$ [i]smart[/i]? b) Is the triplet of polynomials $$u=x+2y+3 , \;\;\;\; v=y+z+2, \;\;\;\;\;w=x+y-z$$ [i]smart[/i]? [i]Proposed by Arturas Dubickas (Vilnius University). [/i]

2006 District Olympiad, 4

We say that a function $f: \mathbb R \to \mathbb R$ has the property $(P)$ if, for any real numbers $x$, \[ \sup_{t\leq x} f(x) = x. \] a) Give an example of a function with property $(P)$ which has a discontinuity in every real point. b) Prove that if $f$ is continuous and satisfies $(P)$ then $f(x) = x$, for all $x\in \mathbb R$.

1979 VTRMC, 4

Let $f(x)$ be continuously differentiable on $(0,\infty)$ and suppose $ \lim _ { x \rightarrow \infty } f ^ { \prime } ( x ) = 0 $. Prove that $ \lim _ { x \rightarrow \infty } f ( x ) / x = 0 $.

2017 Brazil Undergrad MO, 4

Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers in which $\lim_{n\to\infty} a_n = 0$ such that there is a constant $c >0$ so that for all $n \geq 1$, $|a_{n+1}-a_n| \leq c\cdot a_n^2$. Show that exists $d>0$ with $na_n \geq d, \forall n \geq 1$.

2012 Olympic Revenge, 1

Let $a$ and $b$ real numbers. Let $f:[a,b] \rightarrow \mathbb{R}$ a continuous function. We say that f is "smp" if $[a,b]=[c_0,c_1]\cup[c_1,c_2]...\cup[c_{n-1},c_n]$ satisfying $c_0<c_1...<c_n$ and for each $i\in\{0,1,2...n-1\}$: $c_i<x<c_{i+1} \Rightarrow f(c_i)<f(x)<f(c_{i+1})$ or $c_i>x>c_{i+1} \Rightarrow f(c_i)>f(x)>f(c_{i+1})$ Prove that if $f:[a,b] \rightarrow \mathbb{R}$ is continuous such that for each $v\in\mathbb{R}$ there are only finitely many $x$ satisfying $f(x)=v$, then $f$ is "smp".

2019 Miklós Schweitzer, 8

Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function such that $f(x+t) - f(x)$ is locally integrable for every $t$ as a function of $x$. Prove that $f$ is locally integrable.

2020 Jozsef Wildt International Math Competition, W3

Let $n \geq 2$ be an integer. Calculate$$\int \limits_{0}^{\frac{\pi}{2}}\frac{\sin x}{\sin^{2n-1}x+\cos^{2n-1}x}dx$$

2006 Petru Moroșan-Trident, 2

Study the convergence of the sequence $$ \left( \sum_{k=2}^{n+1} \sqrt[k]{n+1} -\sum_{k=2}^{n} \sqrt[k]{n} \right)_{n\ge 2} , $$ and calculate its limit. [i]Dan Negulescu[/i]

2017 Miklós Schweitzer, 7

Characterize all increasing sequences $(s_n)$ of positive reals for which there exists a set $A\subset \mathbb{R}$ with positive measure such that $\lambda(A\cap I)<\frac{s_n}{n}$ holds for every interval $I$ with length $1/n$, where $\lambda$ denotes the Lebesgue measure.