This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

1998 Miklós Schweitzer, 2

For any polynomial f, denote by $P_f$ the number of integers n for which f(n) is a (positive) prime number. Let $q_d = max P_f$ , where f runs over all polynomials with integer coefficients with degree d and reducible over $\mathbb{Q}$. Prove that $\forall d\geq 2$ , $q_d = d$.

1975 Miklós Schweitzer, 1

Show that there exists a tournament $ (T,\rightarrow)$ of cardinality $ \aleph_1$ containing no transitive subtournament of size $ \aleph_1$. ( A structure $ (T,\rightarrow)$ is a $ \textit{tournament}$ if $ \rightarrow$ is a binary, irreflexive, asymmetric and trichotomic relation. The tournament $ (T,\rightarrow)$ is transitive if $ \rightarrow$ is transitive, that is, if it orders $ T$.) [i]A. Hajnal[/i]

2000 VJIMC, Problem 4

Let $\mathcal B$ be a family of open balls in $\mathbb R^n$ and $c<\lambda\left(\bigcup\mathcal B\right)$ where $\lambda$ is the $n$-dimensional Lebesgue measure. Show that there exists a finite family of pairwise disjoint balls $\{U_i\}^k_{i=1}\subseteq\mathcal B$ such that $$\sum_{j=1}^k\lambda(U_j)>\frac c{3^n}.$$

2016 ISI Entrance Examination, 7

$f$ is a differentiable function such that $f(f(x))=x$ where $x \in [0,1]$.Also $f(0)=1$.Find the value of $$\int_0^1(x-f(x))^{2016}dx$$

2001 District Olympiad, 4

Prove that: a) the sequence $a_n=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n},\ n\ge 1$ is monotonic. b) there is a sequence $(a_n)_{n\ge 1}\in \{0,1\}$ such that: \[\lim_{n\to \infty} \left(\frac{a_1}{n+1}+\frac{a_2}{n+2}+\ldots +\frac{a_n}{n+n}\right)=\frac{1}{2}\] [i]Radu Gologan[/i]

2008 Moldova MO 11-12, 4

Define the sequence $ (a_p)_{p\ge0}$ as follows: $ a_p\equal{}\displaystyle\frac{\binom p0}{2\cdot 4}\minus{}\frac{\binom p1}{3\cdot5}\plus{}\frac{\binom p2}{4\cdot6}\minus{}\ldots\plus{}(\minus{}1)^p\cdot\frac{\binom pp}{(p\plus{}2)(p\plus{}4)}$. Find $ \lim_{n\to\infty}(a_0\plus{}a_1\plus{}\ldots\plus{}a_n)$.

2006 Miklós Schweitzer, 6

Let G (n) = max | A(n) |, where A(n) ranges over all subsets of {1,2,...,n} and contains no three-member geometric series, ie, there is no $x, y, z \in A$ such that x < y < z and xz = y^2. Prove that $\lim_{n \to \infty} \frac{G (n)}{n}$ exists.

2010 District Olympiad, 4

Let $ f: [0,1]\rightarrow \mathbb{R}$ a derivable function such that $ f(0)\equal{}f(1)$, $ \int_0^1f(x)dx\equal{}0$ and $ f^{\prime}(x) \neq 1\ ,\ (\forall)x\in [0,1]$. i)Prove that the function $ g: [0,1]\rightarrow \mathbb{R}\ ,\ g(x)\equal{}f(x)\minus{}x$ is strictly decreasing. ii)Prove that for each integer number $ n\ge 1$, we have: $ \left|\sum_{k\equal{}0}^{n\minus{}1}f\left(\frac{k}{n}\right)\right|<\frac{1}{2}$

2008 Miklós Schweitzer, 7

Let $f\colon \mathbb{R}^1\rightarrow \mathbb{R}^2$ be a continuous function such that $f(x)=f(x+1)$ for all $x$, and let $t\in [0,\frac14]$. Prove that there exists $x\in\mathbb{R}$ such that the vector from $f(x-t)$ to $f(x+t)$ is perpendicular to the vector from $f(x)$ to $f(x+\frac12)$. (translated by Miklós Maróti)

2013 Romania National Olympiad, 4

a) Consider\[f\text{:}\left[ \text{0,}\infty \right)\to \left[ \text{0,}\infty \right)\] a differentiable and convex function .Show that $f\left( x \right)\le x$, for every $x\ge 0$, than ${f}'\left( x \right)\le 1$ ,for every $x\ge 0$ b) Determine \[f\text{:}\left[ \text{0,}\infty \right)\to \left[ \text{0,}\infty \right)\] differentiable and convex functions which have the property that $f\left( 0 \right)=0\,$, and ${f}'\left( x \right)f\left( f\left( x \right) \right)=x$, for every $x\ge 0$

2021 Science ON grade XI, 1

Consider a function $f:\mathbb{R}\rightarrow \mathbb{R}$. For $x\in \mathbb{R}$ we say that $f$ is [i]increasing in $x$[/i] if there exists $\epsilon_x > 0$ such that $f(x)\geq{f(a)}$, $\forall a\in (x-\epsilon_x,x)$ and $f(x)\leq f(b)$, $\forall b\in (x,x+\epsilon_x)$. $\textbf{(a)}$ Prove that if $f$ is increasing in $x$, $\forall x\in \mathbb{R}$ then $f$ is increasing over $\mathbb{R}$. $\textbf{(b)}$ We say that $f$ is [i]increasing to the left[/i] in $x$ if there exists $\epsilon_x > 0$ such that $f(x)\geq f(a) $, $ \forall a \in (x-\epsilon_x,x)$. Provide an example of a function $f: [0,1]\rightarrow \mathbb{R}$ for which there exists an infinite set $M \subset (0,1)$ such that $f$ is increasing to the left in every point of $M$, yet $f$ is increasing over no proper subinterval of $[0,1]$.

2010 N.N. Mihăileanu Individual, 3

Consider a countinuous function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R}_{>0} $ that verifies the following conditions: $ \text{(1)} x f(f(x))=(f(x))^2,\quad\forall x\in\mathbb{R}_{>0} $ $ \text{(2)} \lim_{\stackrel{x\to 0}{x>0}} \frac{f(x)}{x}\in\mathbb{R}\cup\{ \pm\infty \} $ [b]a)[/b] Show that $ f $ is bijective. [b]b)[/b] Prove that the sequences $ \left( (\underbrace{f\circ f\circ\cdots \circ f}_{\text{n times}} ) (x) \right)_{n\ge 1} ,\left( (\underbrace{f^{-1}\circ f^{-1}\circ\cdots \circ f^{-1}}_{\text{n times}} ) (x) \right)_{n\ge 1} $ are both arithmetic progressions, for any fixed $ x\in\mathbb{R}_{>0} . $ [b]c)[/b] Determine the function $ f. $ [i]Nelu Chichirim[/i]

2010 Today's Calculation Of Integral, 624

Find the continuous function $f(x)$ such that the following equation holds for any real number $x$. \[\int_0^x \sin t \cdot f(x-t)dt=f(x)-\sin x.\] [i]1977 Keio University entrance exam/Medicine[/i]

1997 IMC, 1

Let $f\in C^3(\mathbb{R})$ nonnegative function with $f(0)=f'(0)=0, f''(0)>0$. Define $g(x)$ as follows: \[ \{ \begin{array}{ccc}g(x)= (\frac{\sqrt{f(x)}}{f'(x)})' &\text{for}& x\not=0 \\ g(x)=0 &\text{for}& x=0\end{array} \] (a) Show that $g$ is bounded in some neighbourhood of $0$. (b) Is the above true for $f\in C^2(\mathbb{R})$?

2014 Miklós Schweitzer, 7

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and let $g : \mathbb{R} \to \mathbb{R}$ be arbitrary. Suppose that the Minkowski sum of the graph of $f$ and the graph of $g$ (i.e., the set $\{( x+y; f(x)+g(y) ) \mid x, y \in \mathbb{R}\}$) has Lebesgue measure zero. Does it follow then that the function $f$ is of the form $f(x) = ax + b$ with suitable constants $a, b \in \mathbb{R}$ ?

2005 SNSB Admission, 2

Let $ \lambda $ be the Lebesgue measure in the plane, let $ u,v\in\mathbb{R}^2, $ let $ A\subset\mathbb{R}^2 $ such that $ \lambda (A)>0 $ and let be the function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ defined as $$ f(t)=\int_A \chi_{A+tu}\cdot\chi_{A+tv}\cdot d\lambda $$ [b]a)[/b] Show that $ f $ is continuous. [b]b)[/b] Prove that any Lebesgue measurable subset of the plane that has nonzero Lebesgue measure contains the vertices of an equilateral triangle.

2019 ISI Entrance Examination, 8

Consider the following subsets of the plane:$$C_1=\Big\{(x,y)~:~x>0~,~y=\frac1x\Big\} $$ and $$C_2=\Big\{(x,y)~:~x<0~,~y=-1+\frac1x\Big\}$$ Given any two points $P=(x,y)$ and $Q=(u,v)$ of the plane, their distance $d(P,Q)$ is defined by $$d(P,Q)=\sqrt{(x-u)^2+(y-v)^2}$$ Show that there exists a unique choice of points $P_0\in C_1$ and $Q_0\in C_2$ such that $$d(P_0,Q_0)\leqslant d(P,Q)\quad\forall ~P\in C_1~\text{and}~Q\in C_2.$$

2010 District Olympiad, 3

Let $ f: \mathbb{R}\rightarrow \mathbb{R}$ a strictly increasing function such that $ f\circ f$ is continuos. Prove that $ f$ is continuos.

2012 Centers of Excellency of Suceava, 3

Let be a continuous function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ that has a root, and for which the line $ y=0 $ in the Cartesian plane is an horizontal asymptote. Show that $ f $ is bounded and touches its boundaries. [i]Mihai Piticari[/i] and [i]Vladimir Cerbu[/i]

2010 Victor Vâlcovici, 1

Let $ \left( a_n\right)_{n\ge 1} $ be a sequence defined by $ a_1>0 $ and $ \frac{a_{n+1}}{a}=\frac{a_n}{a}+\frac{a}{a_n} , $ with $ a>0. $ Calculate $ \lim_{n\to\infty} \frac{a_n}{\sqrt{n+a}} . $ [i]Florin Rotaru[/i]

1966 Miklós Schweitzer, 6

A sentence of the following type if often heard in Hungarian weather reports: "Last night's minimum temperatures took all values between $ \minus{}3$ degrees and $ \plus{}5$ degrees." Show that it would suffice to say, "Both $ \minus{}3$ degrees and $ \plus{}5$ degrees occurred among last night's minimum temperatures." (Assume that temperature as a two-variable function of place and time is continuous.) [i]A.Csaszar[/i]

2023 Brazil Undergrad MO, 2

Let $a_n = \frac{1}{\binom{2n}{n}}, \forall n \leq 1$. a) Show that $\sum\limits_{n=1}^{+\infty}a_nx^n$ converges for all $x \in (-4, 4)$ and that the function $f(x) = \sum\limits_{n=1}^{+\infty}a_nx^n$ satisfies the differential equation $x(x - 4)f'(x) + (x + 2)f(x) = -x$. b) Prove that $\sum\limits_{n=1}^{+\infty}\frac{1}{\binom{2n}{n}} = \frac{1}{3} + \frac{2\pi\sqrt{3}}{27}$.

2001 Romania National Olympiad, 3

Let $f:[-1,1]\rightarrow\mathbb{R}$ be a continuous function. Show that: a) if $\int_0^1 f(\sin (x+\alpha ))\, dx=0$, for every $\alpha\in\mathbb{R}$, then $f(x)=0,\ \forall x\in [-1,1]$. b) if $\int_0^1 f(\sin (nx))\, dx=0$, for every $n\in\mathbb{Z}$, then $f(x)=0,\ \forall x\in [-1,1]$.

2001 Miklós Schweitzer, 5

Prove that if the function $f$ is defined on the set of positive real numbers, its values are real, and $f$ satisfies the equation $$f\left( \frac{x+y}{2}\right) + f\left(\frac{2xy}{x+y} \right) =f(x)+f(y)$$ for all positive $x,y$, then $$2f(\sqrt{xy})=f(x)+f(y)$$ for every pair $x,y$ of positive numbers.

1975 Miklós Schweitzer, 8

Prove that if \[ \sum_{n=1}^m a_n \leq Na_m \;(m=1,2,...)\] holds for a sequence $ \{a_n \}$ of nonnegative real numbers with some positive integer $ N$, then $ \alpha_{i+p} \geq p \alpha_i$ for $ i,p=1,2,...,$ where \[ \alpha_i= \sum_{n=(i-1)N+1}^{iN} a_n \;(i=1,2,...)\ .\] [i]L. Leindler[/i]