This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

1950 Miklós Schweitzer, 7

Examine the behavior of the expression $ \sum_{\nu\equal{}1}^{n\minus{}1}\frac{\log(n\minus{}\nu)}{\nu}\minus{}\log^2 n$ as $ n\rightarrow \infty$

2010 Contests, 2

Compute the sum of the series $\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} = \frac{1}{1\cdot2\cdot3\cdot4} + \frac{1}{5\cdot6\cdot7\cdot8} + ...$

2000 IMC, 6

Let $f: \mathbb{R}\rightarrow ]0,+\infty[$ be an increasing differentiable function with $\lim_{x\rightarrow+\infty}f(x)=+\infty$ and $f'$ is bounded, and let $F(x)=\int^x_0 f(t) dt$. Define the sequence $(a_n)$ recursively by $a_0=1,a_{n+1}=a_n+\frac1{f(a_n)}$ Define the sequence $(b_n)$ by $b_n=F^{-1}(n)$. Prove that $\lim_{x\rightarrow+\infty}(a_n-b_n)=0$.

2007 Nicolae Păun, 4

Construct a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the following properties: $ \text{(i)} f $ is not monotonic on any real interval. $ \text{(ii)} f $ has Darboux property (intermediate value property) on any real interval. $ \text{(iii)} f(x)\leqslant f\left( x+1/n \right) ,\quad \forall x\in\mathbb{R} ,\quad \forall n\in\mathbb{N} $ [i]Alexandru Cioba[/i]

2006 Petru Moroșan-Trident, 1

What relationship should be between the positive real numbers $ a $ and $ b $ such that the sequence $ \left(\left( a\sqrt[n]{n} +b \right)^{\frac{n}{\ln n}}\right)_{n\ge 1} $ has a nonzero and finite limit? For such $ a,b, $ calculate the limit of this sequence. [i]Ion Cucurezeanu[/i]

2004 Unirea, 3

[b]a)[/b] Prove that for any natural numbers $ n, $ the inequality $$ e^{2-1/n} >\prod_{k=1}^n (1+1/k^2) $$ holds. [b]b)[/b] Prove that the sequence $ \left( a_n \right)_{n\ge 1} $ with $ a_1=1 $ and defined by the recursive relation $ a_{n+1}=\frac{2}{n^2}\sum_{k=1}^n ka_k $ is nondecreasing. Is it convergent?

1992 Miklós Schweitzer, 6

Let $E \subset [0,1]$ be a Lebesgue measurable set having Lebesgue measure $| E |<\frac{1}{2}$. Let $$h (s) = \int _ {\overline {E}} \frac{dt}{{(s-t)}^2}$$ where $\overline {E} = [0,1] \backslash E$. Prove that there is one $t \in \overline {E}$ for which $$\int_E \frac {ds} {h (s) {(s-t)} ^ 2} \leq c {| E |} ^ 2$$ with some absolute constant c .

2010 Contests, 2

Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]

2023 Romania National Olympiad, 4

Let $f:[0,1] \rightarrow \mathbb{R}$ a non-decreasing function, $f \in C^1,$ for which $f(0) = 0.$ Let $g:[0,1] \rightarrow \mathbb{R}$ a function defined by \[ g(x) = f(x) + (x - 1) f'(x), \forall x \in [0,1]. \] a) Show that \[ \int_{0}^{1} g(x) \text{dx} = 0. \] b) Prove that for all functions $\phi :[0,1] \rightarrow [0,1],$ convex and differentiable with $\phi(0) = 0$ and $\phi(1) = 1,$ the inequality holds \[ \int_{0}^{1} g( \phi(t)) \text{dt} \leq 0. \]

2017 Romania National Olympiad, 4

Let be a function $ f $ of class $ \mathcal{C}^1[a,b] $ whose derivative is positive. Prove that there exists a real number $ c\in (a,b) $ such that $$ f(f(b))-f(f(a))=(f'(c))^2(b-a) . $$

2023 Brazil Undergrad MO, 3

Prove that there exists a constant $C > 0$ such that, for any integers $m, n$ with $n \geq m > 1$ and any real number $x > 1$, $$\sum_{k=m}^{n}\sqrt[k]{x} \leq C\bigg(\frac{m^2 \cdot \sqrt[m-1]{x}}{\log{x}} + n\bigg)$$

2000 District Olympiad (Hunedoara), 4

Let $ f:[0,1]\longrightarrow\mathbb{R}_+^* $ be a Riemann-integrable function. Calculate $ \lim_{n\to\infty}\left(-n+\sum_{i=1}^ne^{\frac{1}{n}\cdot f\left(\frac{i}{n}\right)}\right) . $

2011 IMC, 4

Let $A_1,A_2,\dots, A_n$ be finite, nonempty sets. Define the function \[f(t)=\sum_{k=1}^n \sum_{1\leq i_1<i_2<\dots<i_k\leq n} (-1)^{k-1}t^{|A_{i_1}\cup A_{i_2}\cup \dots\cup A_{i_k}|}.\] Prove that $f$ is nondecreasing on $[0,1].$ ($|A|$ denotes the number of elements in $A.$)

1997 VJIMC, Problem 4-M

Prove that $$\sum_{n=1}^\infty\frac{n^2}{(7n)!}=\frac1{7^3}\sum_{k=1}^2\sum_{j=0}^6e^{\cos(2\pi j/7)}\cdot\cos\left(\frac{2k\pi j}7+\sin\frac{2\pi j}7\right).$$

2006 IberoAmerican Olympiad For University Students, 6

Let $x_0(t)=1$, $x_{k+1}(t)=(1+t^{k+1})x_k(t)$ for all $k\geq 0$; $y_{n,0}(t)=1$, $y_{n,k}(t)=\frac{t^{n-k+1}-1}{t^k-1}y_{n,k-1}(t)$ for all $n\geq 0$, $1\leq k \leq n$. Prove that $\sum_{j=0}^{n-1}(-1)^j x_{n-j-1}(t)y_{n,j}(t)=\frac{1-(-1)^n}{2}$ for all $n\geq 1$.

1970 Miklós Schweitzer, 6

Let a neighborhood basis of a point $ x$ of the real line consist of all Lebesgue-measurable sets containing $ x$ whose density at $ x$ equals $ 1$. Show that this requirement defines a topology that is regular but not normal. [i]A. Csaszar[/i]

2023 Romania National Olympiad, 3

Let $a,b \in \mathbb{R}$ with $a < b,$ 2 real numbers. We say that $f: [a,b] \rightarrow \mathbb{R}$ has property $(P)$ if there is an integrable function on $[a,b]$ with property that \[ f(x) - f \left( \frac{x + a}{2} \right) = f \left( \frac{x + b}{2} \right) - f(x) , \forall x \in [a,b]. \] Show that for all real number $t$ there exist a unique function $f:[a,b] \rightarrow \mathbb{R}$ with property $(P),$ such that $\int_{a}^{b} f(x) \text{dx} = t.$

1987 Traian Lălescu, 1.3

Let be three polynomials of degree two $ p_1,p_2,p_3\in\mathbb{R} [X] $ and the function $$ f:\mathbb{R}\longrightarrow\mathbb{R} ,\quad f(x)=\max\left( p_1(x),p_2(x),p_3(x)\right) . $$ Then, $ f $ is differentiable if and only if any of these three polynomials dominates the other two.

Today's calculation of integrals, 764

Find $\lim_{n\to\infty} \int_0^{\pi} e^{x}|\sin nx|dx.$

2018 CIIM, Problem 6

Let $\{x_n\}$ be a sequence of real numbers in the interval $[0,1)$. Prove that there exists a sequence $1 < n_1 < n_2 < n_3 < \cdots$ of positive integers such that the following limit exists $$\lim_{i,j \to \infty} x_{n_i+n_j}. $$ That is, there exists a real number $L$ such that for every $\epsilon > 0,$ there exists a positive integer $N$ such that if $i,j > N$, then $|x_{n_i+n_j}-L| < \epsilon.$

1968 Miklós Schweitzer, 2

Let $ a_1,a_2,...,a_n$ be nonnegative real numbers. Prove that \[ ( \sum_{i=1}^na_i)( \sum_{i=1}^na_i^{n-1}) \leq n \prod_{i=1}^na_i+ (n-1) ( \sum_{i=1}^na_i^n).\] [i]J. Suranyi[/i]

2010 Contests, A2

Find all differentiable functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f'(x)=\frac{f(x+n)-f(x)}n\] for all real numbers $x$ and all positive integers $n.$

1999 Romania National Olympiad, 1

„œ‚Find all continuous functions $ f: \mathbb{R}\to [1,\infty)$ for wich there exists $ a\in\mathbb{R}$ and a positive integer $ k$ such that \[ f(x)f(2x)\cdot...\cdot f(nx)\leq an^k\] for all real $ x$ and all positive integers $ n$. [i]author :Radu Gologan[/i]

2018 District Olympiad, 4

Let $a < b$ be real numbers and let $f : (a, b) \to \mathbb{R}$ be a function such that the functions $g : (a, b) \to \mathbb{R}$, $g(x) = (x - a) f(x)$ and $h : (a, b) \to \mathbb{R}$, $h(x) = (x - b) f(x)$ are increasing. Show that the function $f$ is continuous on $(a, b)$.

2006 Romania National Olympiad, 2

Prove that \[ \lim_{n \to \infty} n \left( \frac{\pi}{4} - n \int_0^1 \frac{x^n}{1+x^{2n}} \, dx \right) = \int_0^1 f(x) \, dx , \] where $f(x) = \frac{\arctan x}{x}$ if $x \in \left( 0,1 \right]$ and $f(0)=1$. [i]Dorin Andrica, Mihai Piticari[/i]