This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

1996 IMC, 7

Prove that if $f:[0,1]\rightarrow[0,1]$ is a continuous function, then the sequence of iterates $x_{n+1}=f(x_{n})$ converges if and only if $$\lim_{n\to \infty}(x_{n+1}-x_{n})=0$$

2015 BMT Spring, 9

Find $$\lim_{n\to\infty}\frac1{n^3}\left(\sqrt{n^2-1^2}+\sqrt{n^2-2^2}+\ldots+\sqrt{n^2-(n-1)^2}\right).$$

2005 Miklós Schweitzer, 11

Let $E: R^n \backslash \{0\} \to R^+$ be a infinitely differentiable, quadratic positive homogeneous (that is, for any λ>0 and $p \in R^n \backslash \{0\}$ , $E (\lambda p) = \lambda^2 E (p)$). Prove that if the second derivative of $E''(p): R^n \times R^n \to R$ is a non-degenerate bilinear form at any point $p \in R^n \backslash \{0\}$, then $E''(p)$ ($p \in R^n \backslash \{0\}$) is positive definite.

2013 ISI Entrance Examination, 3

Let $f:\mathbb R\to\mathbb R$ satisfy \[|f(x+y)-f(x-y)-y|\leq y^2\] For all $(x,y)\in\mathbb R^2.$ Show that $f(x)=\frac x2+c$ where $c$ is a constant.

2010 Romania National Olympiad, 4

Let $a\in \mathbb{R}_+$ and define the sequence of real numbers $(x_n)_n$ by $x_1=a$ and $x_{n+1}=\left|x_n-\frac{1}{n}\right|,\ n\ge 1$. Prove that the sequence is convergent and find it's limit.

2012 Grigore Moisil Intercounty, 3

$ \lim_{n\to\infty } \frac{1}{n}\sum_{i,j=1}^n \frac{i+j}{i^2+j^2} $

2010 Romania National Olympiad, 3

Let $f:\mathbb{R}\rightarrow [0,\infty)$. Prove that $f(x+y)\ge (y+1)f(x),\ (\forall)x\in \mathbb{R}$ if and only if the function $g:\mathbb{R}\rightarrow [0,\infty),\ g(x)=e^{-x}f(x),\ (\forall)x\in \mathbb{R}$ is increasing.

1969 Miklós Schweitzer, 3

Let $ f(x)$ be a nonzero, bounded, real function on an Abelian group $ G$, $ g_1,...,g_k$ are given elements of $ G$ and $ \lambda_1,...,\lambda_k$ are real numbers. Prove that if \[ \sum_{i=1}^k \lambda_i f(g_ix) \geq 0\] holds for all $ x \in G$, then \[ \sum_{i=1}^k \lambda_i \geq 0.\] [i]A. Mate[/i]

2010 Romania National Olympiad, 1

Let $f:\mathbb{R}\to\mathbb{R}$ be a monotonic function and $F:\mathbb{R}\to\mathbb{R}$ given by \[F(x)=\int_0^xf(t)\ \text{d}t.\] Prove that if $F$ has a finite derivative, then $f$ is continuous. [i]Dorin Andrica & Mihai Piticari[/i]

2016 Miklós Schweitzer, 5

Does there exist a piecewise linear continuous function $f:\mathbb{R}\to \mathbb{R}$ such that for any two-way infinite sequence $a_n\in[0,1]$, $n\in\mathbb{Z}$, there exists an $x\in\mathbb{R}$ with \[ \limsup_{K\to \infty} \frac{\#\{k\le K\,:\, k\in\mathbb{N},f^k(x)\in[n,n+1)\}}{K}=a_n \] for all $n\in\mathbb{Z}$, where $f^k=f\circ f\circ \dots\circ f$ stands for the $k$-fold iterate of $f$?

2012 Romania National Olympiad, 1

[color=darkred]Let $f\colon [0,\infty)\to\mathbb{R}$ be a continuous function such that $\int_0^nf(x)f(n-x)\ \text{d}x=\int_0^nf^2(x)\ \text{d}x$ , for any natural number $n\ge 1$ . Prove that $f$ is a periodic function.[/color]

2017 CIIM, Problem 2

Let $f :\mathbb{R} \to \mathbb{R}$ a derivable function such that $f(0) = 0$ and $|f'(x)| \leq |f(x)\cdot log |f(x)||$ for every $x \in \mathbb{R}$ such that $0 < |f(x)| < 1/2.$ Prove that $f(x) = 0$ for every $x \in \mathbb{R}$.

1949 Miklós Schweitzer, 2

Compute $ \lim_{n\rightarrow \infty} \int_{0}^{\pi} \frac {\sin{x}}{1 \plus{} \cos^2 nx}dx$ .

2010 Today's Calculation Of Integral, 621

Find the limit $\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^n k\ln \left(\frac{n^2+(k-1)^2}{n^2+k^2}\right).$ [i]2010 Yokohama National University entrance exam/Engineering, 2nd exam[/i]

1977 Miklós Schweitzer, 9

Suppose that the components of he vector $ \textbf{u}=(u_0,\ldots,u_n)$ are real functions defined on the closed interval $ [a,b]$ with the property that every nontrivial linear combination of them has at most $ n$ zeros in $ [a,b]$. Prove that if $ \sigma$ is an increasing function on $ [a,b]$ and the rank of the operator \[ A(f)= \int_{a}^b \textbf{u}(x)f(x)d\sigma(x), \;f \in C[a,b]\ ,\] is $ r \leq n$, then $ \sigma$ has exactly $ r$ points of increase. [i]E. Gesztelyi[/i]

1995 Miklós Schweitzer, 3

Denote $\langle x\rangle$ the distance of the real number x from the nearest integer. Let f be a linear, 1 periodic, continuous real function. Prove that there exist natural n and real numbers $a_1 , ..., a_n , b_1 , ..., b_n , c_1 , ..., c_n$ such that $$f(x) = \sum_{i = 1}^n c_i \langle a_ix + b_i \rangle$$ for every x iff there is a k such that $$\sum_{j = 1}^{2^k} f \left(x+{j\over2^k}\right)$$ is constant.

2012 Romania National Olympiad, 4

[color=darkred]Find all differentiable functions $f\colon [0,\infty)\to [0,\infty)$ for which $f(0)=0$ and $f^{\prime}(x^2)=f(x)$ for any $x\in [0,\infty)$ .[/color]

2011 Miklós Schweitzer, 8

Given a nonzero real number $a\leq 1/e$, let $z_1, ..., z_n \in C$ be non-real numbers for which $ze^z + a = 0$ holds, and let $c_1, ..., c_n \in C$ be arbitrary. Show that the function $f(x)=Re(\sum_{j=1}^n c_j e^{z_j x})$ ($x \in R$) has a zero in every closed interval of length 1.

2006 Cezar Ivănescu, 3

[b]a)[/b] Let $ h:\mathbb{R}\longrightarrow\mathbb{R} $ he a function that admits a primitive $ H $ such that the function $ h/H $ is constant. Prove that there is a real number $ \gamma $ such that $ h(x)=\gamma\cdot\exp \left( x\cdot\frac{h}{H} (x) \right) , $ for any real number $ x. $ [b]b)[/b] Find the functions $ f,g:\mathbb{R}\longrightarrow\mathbb{R} $ that admit the primitives $ F,G, $ respectively, that satisfy $ f=\frac{G+g}{2},g=\frac{F+f}{2} $ and $ f(0)=g(0)=0. $

1968 Miklós Schweitzer, 5

Let $ k$ be a positive integer, $ z$ a complex number, and $ \varepsilon <\frac12$ a positive number. Prove that the following inequality holds for infinitely many positive integers $ n$: \[ \mid \sum_{0\leq l \leq \frac{n}{k+1}} \binom{n-kl}{l}z^l \mid \geq (\frac 12-\varepsilon)^n.\] [i]P. Turan[/i]

1969 Miklós Schweitzer, 8

Let $ f$ and $ g$ be continuous positive functions defined on the interval $ [0, +\infty)$, and let $ E \subset[0,+\infty)$ be a set of positive measure. Prove that the range of the function defined on $ E \times E$ by the relation \[ F(x,y)= %Error. "dispalymath" is a bad command. \int_0^xf(t)dt+ %Error. "dispalymath" is a bad command. \int_0^y g(t)dt\] has a nonvoid interior. [i]L. Losonczi[/i]

2020 Miklós Schweitzer, 2

Prove that if $f\colon \mathbb{R} \to \mathbb{R}$ is a continuous periodic function and $\alpha \in \mathbb{R}$ is irrational, then the sequence $\{n\alpha+f(n\alpha)\}_{n=1}^{\infty}$ modulo 1 is dense in $[0,1]$.

1951 Miklós Schweitzer, 1

Choose terms of the harmonic series so that the sum of the chosen terms be finite. Prove that the sequence of these terms is of density zero in the sequence $ 1,\frac12,\frac13,\dots,\frac1n,\dots$

2004 Alexandru Myller, 4

For any natural number $ m, \quad\lim_{n\to\infty } n^{1+m} \int_{0}^1 e^{-nx}\ln \left( 1+x^m \right) dx =m! . $ [i]Gheorghe Iurea[/i]

1994 IMC, 2

Let $f\colon \mathbb R ^2 \rightarrow \mathbb R$ be given by $f(x,y)=(x^2-y^2)e^{-x^2-y^2}$. a) Prove that $f$ attains its minimum and its maximum. b) Determine all points $(x,y)$ such that $\frac{\partial f}{\partial x}(x,y)=\frac{\partial f}{\partial y}(x,y)=0$ and determine for which of them $f$ has global or local minimum or maximum.