Found problems: 884
2016 VJIMC, 4
Find the value of sum $\sum_{n=1}^\infty A_n$, where $$A_n=\sum_{k_1=1}^\infty\cdots\sum_{k_n=1}^\infty \frac{1}{k_1^2}\frac{1}{k_1^2+k_2^2}\cdots\frac{1}{k_1^2+\cdots+k_n^2}.$$
2019 VJIMC, 2
A triplet of polynomials $u,v,w \in \mathbb{R}[x,y,z]$ is called [i]smart[/i] if there exists polynomials $P,Q,R\in \mathbb{R}[x,y,z]$ such that the following polynomial identity holds :$$u^{2019}P +v^{2019 }Q+w^{2019} R=2019$$
a) Is the triplet of polynomials $$u=x+2y+3 , \;\;\;\; v=y+z+2, \;\;\;\;\;w=x+y+z$$ [i]smart[/i]?
b) Is the triplet of polynomials $$u=x+2y+3 , \;\;\;\; v=y+z+2, \;\;\;\;\;w=x+y-z$$ [i]smart[/i]?
[i]Proposed by Arturas Dubickas (Vilnius University).
[/i]
2006 Miklós Schweitzer, 7
Suppose that the function $f: Z \to Z$ can be written in the form $f = g_1+...+g_k$ , where $g_1,. . . , g_k: Z \to R$ are real-valued periodic functions, with period $a_1,...,a_k$. Does it follow that f can be written in the form $f = h_1 +. . + h_k$ , where $h_1,. . . , h_k: Z \to Z$ are periodic functions with integer values, also with period $a_1,...,a_k$?
Gheorghe Țițeica 2024, P2
Find all monotonic and twice differentiable functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $$f''+4f+3f^2+8f^3=0.$$
2001 Romania National Olympiad, 4
Let $f:[0,\infty )\rightarrow\mathbb{R}$ be a periodical function, with period $1$, integrable on $[0,1]$. For a strictly increasing and unbounded sequence $(x_n)_{n\ge 0},\, x_0=0,$ with $\lim_{n\rightarrow\infty} (x_{n+1}-x_n)=0$, we denote $r(n)=\max \{ k\mid x_k\le n\}$.
a) Show that:
\[\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{r(n)}(x_k-x_{k+1})f(x_k)=\int_0^1 f(x)\, dx\]
b) Show that:
\[ \lim_{n\rightarrow\infty} \frac{1}{\ln n}\sum_{k=1}^{r(n)}\frac{f(\ln k)}{k}=\int_0^1f(x)\, dx\]
2010 N.N. Mihăileanu Individual, 3
Consider a countinuous function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R}_{>0} $ that verifies the following conditions:
$ \text{(1)} x f(f(x))=(f(x))^2,\quad\forall x\in\mathbb{R}_{>0} $
$ \text{(2)} \lim_{\stackrel{x\to 0}{x>0}} \frac{f(x)}{x}\in\mathbb{R}\cup\{ \pm\infty \} $
[b]a)[/b] Show that $ f $ is bijective.
[b]b)[/b] Prove that the sequences $ \left( (\underbrace{f\circ f\circ\cdots \circ f}_{\text{n times}} ) (x) \right)_{n\ge 1} ,\left( (\underbrace{f^{-1}\circ f^{-1}\circ\cdots \circ f^{-1}}_{\text{n times}} ) (x) \right)_{n\ge 1} $ are both arithmetic progressions, for any fixed $ x\in\mathbb{R}_{>0} . $
[b]c)[/b] Determine the function $ f. $
[i]Nelu Chichirim[/i]
1970 IMO Longlists, 25
A real function $f$ is defined for $0\le x\le 1$, with its first derivative $f'$ defined for $0\le x\le 1$ and its second derivative $f''$ defined for $0<x<1$. Prove that if $f(0)=f'(0)=f'(1)=f(1)-1 =0$, then there exists a number $0<y<1$ such that $|f''(y)|\ge 4$.
2018 District Olympiad, 3
Let $(a_n)_{n\ge 1}$ be a sequence such that $a_n > 1$ and $a_{n+1}^2 \ge a_n a_{n + 2}$, for any $n\ge 1$. Show that the sequence $(x_n)_{n\ge 1}$ given by $x_n = \log_{a_n} a_{n + 1}$ for $n\ge 1$ is convergent and compute its limit.
2019 Korea USCM, 6
A function $f:[0,\infty)\to[0,\infty)$ is integrable and
$$\int_0^\infty f(x)^2 dx<\infty,\quad \int_0^\infty xf(x) dx <\infty$$
Prove the following inequality.
$$\left(\int_0^\infty f(x) dx \right)^3 \leq 8\left(\int_0^\infty f(x)^2 dx \right) \left(\int_0^\infty xf(x) dx \right)$$
1969 Miklós Schweitzer, 10
In $ n$-dimensional Euclidean space, the square of the two-dimensional Lebesgue measure of a bounded, closed, (two-dimensional) planar set is equal to the sum of the squares of the measures of the orthogonal projections of the given set on the $ n$-coordinate hyperplanes.
[i]L. Tamassy[/i]
2019 ISI Entrance Examination, 8
Consider the following subsets of the plane:$$C_1=\Big\{(x,y)~:~x>0~,~y=\frac1x\Big\} $$ and $$C_2=\Big\{(x,y)~:~x<0~,~y=-1+\frac1x\Big\}$$ Given any two points $P=(x,y)$ and $Q=(u,v)$ of the plane, their distance $d(P,Q)$ is defined by $$d(P,Q)=\sqrt{(x-u)^2+(y-v)^2}$$ Show that there exists a unique choice of points $P_0\in C_1$ and $Q_0\in C_2$ such that $$d(P_0,Q_0)\leqslant d(P,Q)\quad\forall ~P\in C_1~\text{and}~Q\in C_2.$$
1976 Miklós Schweitzer, 8
Prove that the set of all linearly combinations (with real coefficients) of the system of polynomials $ \{ x^n\plus{}x^{n^2} \}_{n\equal{}0}^{\infty}$ is dense in $ C[0,1]$.
[i]J. Szabados[/i]
2000 VJIMC, Problem 3
Let $a_1,a_2,\ldots$ be a bounded sequence of reals. Is it true that the fact
$$\lim_{N\to\infty}\frac1N\sum_{n=1}^Na_n=b\enspace\text{ and }\enspace\lim_{N\to\infty}\frac1{\log N}\sum_{n=1}^N\frac{a_n}n=c$$implies $b=c$?
1980 Miklós Schweitzer, 7
Let $ n \geq 2$ be a natural number and $ p(x)$ a real polynomial of degree at most $ n$ for which \[ \max _{ \minus{}1 \leq x \leq 1} |p(x)| \leq 1, \; p(\minus{}1)\equal{}p(1)\equal{}0 \ .\] Prove that then \[ |p'(x)| \leq \frac{n \cos \frac{\pi}{2n}}{\sqrt{1\minus{}x^2 \cos^2 \frac{\pi}{2n}}} \;\;\;\;\; \left( \minus{}\frac{1}{\cos \frac{\pi}{2n}} < x < \frac{1}{\cos \frac{\pi}{2n}} \\\\\ \right).\]
[i]J. Szabados[/i]
Gheorghe Țițeica 2024, P4
Let $f:\mathbb{R}\rightarrow (0,\infty)$ be continuous function of period $1$. Prove that for any $a\in\mathbb{R}$ $$\int_0^1\frac{f(x)}{f(x+a)}dx\geq 1.$$
2007 Moldova National Olympiad, 12.8
Find all continuous functions $f\colon [0;1] \to R$ such that
\[\int_{0}^{1}f(x)dx = 2\int_{0}^{1}(f(x^{4}))^{2}dx+\frac{2}{7}\]
2010 Contests, 2
Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]
1965 Miklós Schweitzer, 7
Prove that any uncountable subset of the Euclidean $ n$-space contains an countable subset with the property that the distances between different pairs of points are different (that is, for any points $ P_1 \not\equal{} P_2$ and $ Q_1\not\equal{} Q_2$ of this subset, $ \overline{P_1P_2}\equal{}\overline{Q_1Q_2}$ implies either $ P_1\equal{}Q_1$ and $ P_2\equal{}Q_2$, or $ P_1\equal{}Q_2$ and $ P_2\equal{}Q_1$). Show that a similar statement is not valid if the Euclidean $ n$-space is replaced with a (separable) Hilbert space.
2010 IMC, 2
Compute the sum of the series
$\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} = \frac{1}{1\cdot2\cdot3\cdot4} + \frac{1}{5\cdot6\cdot7\cdot8} + ...$
2002 District Olympiad, 3
[b]a)[/b] Calculate $ \lim_{n\to\infty} \int_0^{\alpha } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx , $ for all $ \alpha\in (0,1) . $
[b]b)[/b] Calculate $ \lim_{n\to\infty} \int_0^{1 } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx . $
2011 District Olympiad, 4
Find all the functions $f:[0,1]\rightarrow \mathbb{R}$ for which we have:
\[|x-y|^2\le |f(x)-f(y)|\le |x-y|,\]
for all $x,y\in [0,1]$.
1994 Miklós Schweitzer, 3
Let p be an odd prime, A be a non-empty subset of residue classes modulo p, $f:A\to\mathbb R$. Suppose that f is not constant and satisfies $f(x) \leq \frac{f(x + h) + f(x-h)}{2}$ whenever $x,x+h,x-h\in A$. Prove that $|A| \leq \frac{p + 1}{2}$.
1994 IMC, 3
Let $f$ be a real-valued function with $n+1$ derivatives at each point of $\mathbb R$. Show that for each pair of real numbers $a$, $b$, $a<b$, such that
$$\ln\left( \frac{f(b)+f'(b)+\cdots + f^{(n)} (b)}{f(a)+f'(a)+\cdots + f^{(n)}(a)}\right)=b-a$$
there is a number $c$ in the open interval $(a,b)$ for which
$$f^{(n+1)}(c)=f(c)$$
2019 VJIMC, 4
Determine the largest constant $K\geq 0$ such that $$\frac{a^a(b^2+c^2)}{(a^a-1)^2}+\frac{b^b(c^2+a^2)}{(b^b-1)^2}+\frac{c^c(a^2+b^2)}{(c^c-1)^2}\geq K\left (\frac{a+b+c}{abc-1}\right)^2$$ holds for all positive real numbers $a,b,c$ such that $ab+bc+ca=abc$.
[i]Proposed by Orif Ibrogimov (Czech Technical University of Prague).[/i]
Kvant 2020, M365
[list=a]
[*]The sum of several numbers is equal to one. Can the sum of their cubes be greater than one?
[*]The same question as before, for numbers not exceeding one.
[*]Can it happen that the series $a_1+a_2+\cdots$ converges, but the series $a_1^3+a_2^3+\cdots$ diverges?
[/list]