Found problems: 1342
1974 IMO Longlists, 43
An $(n^2+n+1) \times (n^2+n+1)$ matrix of zeros and ones is given. If no four ones are vertices of a rectangle, prove that the number of ones does not exceed $(n + 1)(n^2 + n + 1).$
2010 Romania National Olympiad, 2
Let $ABCD$ be a rectangle of centre $O$, such that $\angle DAC=60^{\circ}$. The angle bisector of $\angle DAC$ meets $DC$ at $S$. Lines $OS$ and $AD$ meet at $L$, and lines $BL$ and $AC$ meet at $M$. Prove that lines $SM$ and $CL$ are parallel.
2004 AMC 10, 19
A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a horizontal width of 3 feet is painted on the silo, as shown, making two complete revolutions around it. What is the area of the stripe in square feet?
[asy]
size(250);defaultpen(linewidth(0.8));
draw(ellipse(origin, 3, 1));
fill((3,0)--(3,2)--(-3,2)--(-3,0)--cycle, white);
draw((3,0)--(3,16)^^(-3,0)--(-3,16));
draw((0, 15)--(3, 12)^^(0, 16)--(3, 13));
filldraw(ellipse((0, 16), 3, 1), white, black);
draw((-3,11)--(3, 5)^^(-3,10)--(3, 4));
draw((-3,2)--(0,-1)^^(-3,1)--(-1,-0.89));
draw((0,-1)--(0,15), dashed);
draw((3,-2)--(3,-4)^^(-3,-2)--(-3,-4));
draw((-7,0)--(-5,0)^^(-7,16)--(-5,16));
draw((3,-3)--(-3,-3), Arrows(6));
draw((-6,0)--(-6,16), Arrows(6));
draw((-2,9)--(-1,9), Arrows(3));
label("$3$", (-1.375,9.05), dir(260), fontsize(7));
label("$A$", (0,15), N);
label("$B$", (0,-1), NE);
label("$30$", (0, -3), S);
label("$80$", (-6, 8), W);[/asy]
$ \textbf{(A)}\; 120\qquad
\textbf{(B)}\; 180\qquad
\textbf{(C)}\; 240\qquad
\textbf{(D)}\; 360\qquad
\textbf{(E)}\; 480$
Novosibirsk Oral Geo Oly VII, 2022.4
Fold the next seven corners into a rectangle.
[img]https://cdn.artofproblemsolving.com/attachments/b/b/2b8b9d6d4b72024996a66d41f865afb91bb9b7.png[/img]
1961 All-Soviet Union Olympiad, 2
Consider a rectangle $A_1A_2A_3A_4$ and a circle $\mathcal{C}_i$ centered at $A_i$ with radius $r_i$ for $i=1,2,3,4$. Suppose that $r_1+r_3=r_2+r_4<d$, where $d$ is the diagonal of the rectangle. The two pairs of common outer tangents of $\mathcal{C}_1$ and $\mathcal{C}_3$, and of $\mathcal{C}_2$ and $\mathcal{C}_4$ form a quadrangle. Prove that this quadrangle has an inscribed circle.
1986 Polish MO Finals, 1
A square of side $1$ is covered with $m^2$ rectangles.
Show that there is a rectangle with perimeter at least $\frac{4}{m}$.
2008 AMC 10, 17
An equilateral triangle has side length $ 6$. What is the area of the region containing all points that are outside the triangle and not more than $ 3$ units from a point of the triangle?
$ \textbf{(A)}\ 36\plus{}24\sqrt{3} \qquad
\textbf{(B)}\ 54\plus{}9\pi \qquad
\textbf{(C)}\ 54\plus{}18\sqrt{3}\plus{}6\pi \qquad
\textbf{(D)}\ \left(2\sqrt{3}\plus{}3\right)^2\pi \\
\textbf{(E)}\ 9\left(\sqrt{3}\plus{}1\right)^2\pi$
1999 India National Olympiad, 2
In a village $1998$ persons volunteered to clean up, for a fair, a rectangular field with integer sides and perimeter equla to $3996$ feet. For this purpose, the field was divided into $1998$ equal parts. If each part had an integer area, find the length and breadth of the field.
2012 Cuba MO, 4
With $21$ pieces, some white and some black, a rectangle is formed of $3 \times 7$. Prove that there are always four pieces of the same color located at the vertices of a rectangle.
2007 AMC 10, 24
Circles centered at $ A$ and $ B$ each have radius $ 2$, as shown. Point $ O$ is the midpoint of $ \overline{AB}$, and $ OA \equal{} 2\sqrt {2}$. Segments $ OC$ and $ OD$ are tangent to the circles centered at $ A$ and $ B$, respectively, and $ EF$ is a common tangent. What is the area of the shaded region $ ECODF$?
[asy]unitsize(6mm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,0);
pair A=(-2*sqrt(2),0);
pair B=(2*sqrt(2),0);
pair G=shift(0,2)*A;
pair F=shift(0,2)*B;
pair C=shift(A)*scale(2)*dir(45);
pair D=shift(B)*scale(2)*dir(135);
pair X=A+2*dir(-60);
pair Y=B+2*dir(240);
path P=C--O--D--Arc(B,2,135,90)--G--Arc(A,2,90,45)--cycle;
fill(P,gray);
draw(Circle(A,2));
draw(Circle(B,2));
dot(A);
label("$A$",A,W);
dot(B);
label("$B$",B,E);
dot(C);
label("$C$",C,W);
dot(D);
label("$D$",D,E);
dot(G);
label("$E$",G,N);
dot(F);
label("$F$",F,N);
dot(O);
label("$O$",O,S);
draw(G--F);
draw(C--O--D);
draw(A--B);
draw(A--X);
draw(B--Y);
label("$2$",midpoint(A--X),SW);
label("$2$",midpoint(B--Y),SE);[/asy]$ \textbf{(A)}\ \frac {8\sqrt {2}}{3}\qquad \textbf{(B)}\ 8\sqrt {2} \minus{} 4 \minus{} \pi \qquad \textbf{(C)}\ 4\sqrt {2}$
$ \textbf{(D)}\ 4\sqrt {2} \plus{} \frac {\pi}{8}\qquad \textbf{(E)}\ 8\sqrt {2} \minus{} 2 \minus{} \frac {\pi}{2}$
2011 Postal Coaching, 4
Consider $2011^2$ points arranged in the form of a $2011 \times 2011$ grid. What is the maximum number of points that can be chosen among them so that no four of them form the vertices of either an isosceles trapezium or a rectangle whose parallel sides are parallel to the grid lines?
1992 AMC 8, 5
A circle of diameter $1$ is removed from a $2\times 3$ rectangle, as shown. Which whole number is closest to the area of the shaded region?
[asy]
fill((0,0)--(0,2)--(3,2)--(3,0)--cycle,gray);
draw((0,0)--(0,2)--(3,2)--(3,0)--cycle,linewidth(1));
fill(circle((1,5/4),1/2),white);
draw(circle((1,5/4),1/2),linewidth(1));
[/asy]
$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$
1963 AMC 12/AHSME, 32
The dimensions of a rectangle $R$ are $a$ and $b$, $a < b$. It is required to obtain a rectangle with dimensions $x$ and $y$, $x < a$, $y < a$, so that its perimeter is one-third that of $R$, and its area is one-third that of $R$. The number of such (different) rectangles is:
$\textbf{(A)}\ 0 \qquad
\textbf{(B)}\ 1\qquad
\textbf{(C)}\ 2 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ \text{infinitely many}$
2011 India IMO Training Camp, 3
Consider a $ n\times n $ square grid which is divided into $ n^2 $ unit squares(think of a chess-board). The set of all unit squares intersecting the main diagonal of the square or lying under it is called an $n$-staircase. Find the number of ways in which an $n$-stair case can be partitioned into several rectangles, with sides along the grid lines, having mutually distinct areas.
1985 Putnam, A2
Let $T$ be an acute triangle. Inscribe a rectangle $R$ in $T$ with one side along a side of $T.$ Then inscribe a rectangle $S$ in the triangle formed by the side of $R$ opposite the side on the boundary of $T,$ and the other two sides of $T,$ with one side along the side of $R.$ For any polygon $X,$ let $A(X)$ denote the area of $X.$ Find the maximum value, or show that no maximum exists, of $\tfrac{A(R)+A(S)}{A(T)},$ where $T$ ranges over all triangles and $R,S$ over all rectangles as above.
2007 Princeton University Math Competition, 10
Pawns are arranged on an $8 \times 8$ chessboard such that:
Each $2 \times 1$ or $1 \times 2$ rectangle has at least $1$ pawn;
Each $7 \times 1$ or $1 \times 7$ rectangle has at least $1$ pair of adjacent pawns.
What is the minimum number of pawns in such an arrangement?
2005 Czech And Slovak Olympiad III A, 4
An acute-angled triangle $AKL$ is given on a plane. Consider all rectangles $ABCD$ circumscribed to triangle $AKL$ such that point $K$ lies on side $BC$ and point $L$ lieson side $CD$. Find the locus of the intersection $S$ of the diagonals $AC$ and $BD$.
2012 Denmark MO - Mohr Contest, 2
It is known about a given rectangle that it can be divided into nine squares which are situated relative to each other as shown. The black rectangle has side length $1$. Are there more than one possibility for the side lengths of the rectangle?
[img]https://cdn.artofproblemsolving.com/attachments/1/0/af6bc5b867541c04586e4b03db0a7f97f8fe87.png[/img]
1953 AMC 12/AHSME, 15
A circular piece of metal of maximum size is cut out of a square piece and then a square piece of maximum size is cut out of the circular piece. The total amount of metal wasted is:
$ \textbf{(A)}\ \frac{1}{4} \text{ the area of the original square}\\
\textbf{(B)}\ \frac{1}{2} \text{ the area of the original square}\\
\textbf{(C)}\ \frac{1}{2} \text{ the area of the circular piece}\\
\textbf{(D)}\ \frac{1}{4} \text{ the area of the circular piece}\\
\textbf{(E)}\ \text{none of these}$
2009 AMC 12/AHSME, 8
Four congruent rectangles are placed as shown. The area of the outer square is $ 4$ times that of the inner square. What is the ratio of the length of the longer side of each rectangle to the length of its shorter side?
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt));
path p=(1,1)--(-2,1)--(-2,2)--(1,2);
draw(p);
draw(rotate(90)*p);
draw(rotate(180)*p);
draw(rotate(270)*p);[/asy]$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ \sqrt {10} \qquad \textbf{(C)}\ 2 \plus{} \sqrt2 \qquad \textbf{(D)}\ 2\sqrt3 \qquad \textbf{(E)}\ 4$
1997 Pre-Preparation Course Examination, 6
A polygon can be dissected into $100$ rectangles, but it cannot be dissected into $99$ rectangles. Prove that this polygon cannot be dissected into $100$ triangles.
2001 Canada National Olympiad, 4
Let $n$ be a positive integer. Nancy is given a rectangular table in which each entry is a positive integer. She is permitted to make either of the following two moves:
(1) select a row and multiply each entry in this row by $n$;
(2) select a column and subtract $n$ from each entry in this column.
Find all possible values of $n$ for which the following statement is true:
Given any rectangular table, it is possible for Nancy to perform a finite sequence of moves to create a table in which each entry is $0$.
1992 Rioplatense Mathematical Olympiad, Level 3, 5
Let $ABC$ be an acute triangle.
Find the locus of the centers of the rectangles which have their vertices on the sides of $ABC$.
Denmark (Mohr) - geometry, 2002.1
An interior point in a rectangle is connected by line segments to the midpoints of its four sides. Thus four domains (polygons) with the areas $a, b, c$ and $d$ appear (see the figure). Prove that $a + c = b + d$.
[img]https://1.bp.blogspot.com/-BipDNHELjJI/XzcCa68P3HI/AAAAAAAAMXY/H2Iqya9VItMLXrRqsdyxHLTXCAZ02nEtgCLcBGAsYHQ/s0/2002%2BMohr%2Bp1.png[/img]
2010 Contests, 1
A table $2 \times 2010$ is divided to unit cells. Ivan and Peter are playing the following game. Ivan starts, and puts horizontal $2 \times 1$ domino that covers exactly two unit table cells. Then Peter puts vertical $1 \times 2$ domino that covers exactly two unit table cells. Then Ivan puts horizontal domino. Then Peter puts vertical domino, etc. The person who cannot put his domino will lose the game. Find who have winning strategy.