This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2010 Kazakhstan National Olympiad, 1

Triangle $ABC$ is given. Consider ellipse $ \Omega _1$, passes through $C$ with focuses in $A$ and $B$. Similarly define ellipses $ \Omega _2 , \Omega _3$ with focuses $B,C$ and $C,A$ respectively. Prove, that if all ellipses have common point $D$ then $A,B,C,D$ lies on the circle. Ellipse with focuses $X,Y$, passes through $Z$- locus of point $T$, such that $XT+YT=XZ+YZ$

2011 Rioplatense Mathematical Olympiad, Level 3, 5

A [i]form [/i] is the union of squared rectangles whose bases are consecutive unitary segments in a horizontal line that leaves all the rectangles on the same side, and whose heights $m_1, ... , m_n$ satisying $m_1\ge ... \ge m_n$. An [i]angle [/i] in a [i]form [/i] consists of a box $v$ and of all the boxes to the right of $v$ and all the boxes above $v$. The size of a [i]form [/i] of an [i]angle [/i] is the number of boxes it contains. Find the maximum number of [i]angles [/i] of size $11$ in a form of size $400$. [url=http://www.oma.org.ar/enunciados/omr20.htm]source[/url]

2009 Tournament Of Towns, 1

A rectangle is dissected into several smaller rectangles. Is it possible that for each pair of these rectangles, the line segment connecting their centers intersects some third rectangle?

1998 Slovenia National Olympiad, Problem 3

A rectangle $ABCD$ with $AB>AD$ is given. The circle with center $B$ and radius $AB$ intersects the line $CD$ at $E$ and $F$. (a) Prove that the circumcircle of triangle $EBF$ is tangent to the circle with diameter $AD$. Denote the tangency point by $G$. (b) Prove that the points $D,G,$ and $B$ are collinear.

2022 Iran MO (3rd Round), 2

$m\times n$ grid is tiled by mosaics $2\times2$ and $1\times3$ (horizontal and vertical). Prove that the number of ways to choose a $1\times2$ rectangle (horizontal and vertical) such that one of its cells is tiled by $2\times2$ mosaic and the other cell is tiled by $1\times3$ mosaic [horizontal and vertical] is an even number.

May Olympiad L1 - geometry, 1995.5

A tortoise walks $60$ meters per hour and a lizard walks at $240$ meters per hour. There is a rectangle $ABCD$ where $AB =60$ and $AD =120$. Both start from the vertex $A$ and in the same direction ($A \to B \to D \to A$), crossing the edge of the rectangle. The lizard has the habit of advancing two consecutive sides of the rectangle, turning to go back one, turning to go forward two, turning to go back one and so on. How many times and in what places do the tortoise and the lizard meet when the tortoise completes its third turn?

2015 Saint Petersburg Mathematical Olympiad, 5

Square with side 100 was cut by 99 horizontal and 99 vertical lines into 10000 rectangles (not necessarily with integer sides). How many rectangles in this square with area not exceeding 1 at least can be?

2014 South East Mathematical Olympiad, 8

Define a figure which is constructed by unit squares "cross star" if it satisfies the following conditions: $(1)$Square bar $AB$ is bisected by square bar $CD$ $(2)$At least one square of $AB$ lay on both sides of $CD$ $(3)$At least one square of $CD$ lay on both sides of $AB$ There is a rectangular grid sheet composed of $38\times 53=2014$ squares,find the number of such cross star in this rectangle sheet

2012 NIMO Problems, 15

In the diagram below, square $ABCD$ with side length 23 is cut into nine rectangles by two lines parallel to $\overline{AB}$ and two lines parallel to $\overline{BC}$. The areas of four of these rectangles are indicated in the diagram. Compute the largest possible value for the area of the central rectangle. [asy] size(250); defaultpen (linewidth (0.7) + fontsize (10)); draw ((0,0)--(23,0)--(23,23)--(0,23)--cycle); label("$A$", (0,23), NW); label("$B$", (23, 23), NE); label("$C$", (23,0), SE); label("$D$", (0,0), SW); draw((0,6)--(23,6)); draw((0,19)--(23,19)); draw((5,0)--(5,23)); draw((12,0)--(12,23)); label("13", (17/2, 21)); label("111",(35/2,25/2)); label("37",(17/2,3)); label("123",(2.5,12.5));[/asy] [i]Proposed by Lewis Chen[/i]

2017 Princeton University Math Competition, A5/B7

Rectangle $HOMF$ has $HO=11$ and $OM=5$. Triangle $ABC$ has orthocenter $H$ and circumcenter $O$. $M$ is the midpoint of $BC$ and altitude $AF$ meets $BC$ at $F$. Find the length of $BC$.

1999 Brazil National Olympiad, 3

How many coins can be placed on a $10 \times 10$ board (each at the center of its square, at most one per square) so that no four coins form a rectangle with sides parallel to the sides of the board?

2008 Tournament Of Towns, 5

On the infinite chessboard several rectangular pieces are placed whose sides run along the grid lines. Each two have no squares in common, and each consists of an odd number of squares. Prove that these pieces can be painted in four colours such that two pieces painted in the same colour do not share any boundary points.

2025 USAJMO, 3

Let $m$ and $n$ be positive integers, and let $\mathcal R$ be a $2m\times{2n}$ grid of unit squares. A [i]domino[/i] is a $1\times2{}$ or $2\times{1}$ rectangle. A subset $S$ of grid squares in $\mathcal R$ is [i]domino-tileable[/i] if dominoes can be placed to cover every square of $S$ exactly once with no domino extending outside of $S$. [i]Note[/i]: The empty set is domino tileable. An [i]up-right path[/i] is a path from the lower-left corner of $\mathcal R$ to the upper-right corner of $\mathcal R$ formed by exactly $2m+2n$ edges of the grid squares. Determine, with proof, in terms of $m$ and $n$, the number of up-right paths that divide $\mathcal R$ into two domino-tileable subsets.

2010 Tournament Of Towns, 1

In a multiplication table, the entry in the $i$-th row and the $j$-th column is the product $ij$ From an $m\times n$ subtable with both $m$ and $n$ odd, the interior $(m-2) (n-2)$ rectangle is removed, leaving behind a frame of width $1$. The squares of the frame are painted alternately black and white. Prove that the sum of the numbers in the black squares is equal to the sum of the numbers in the white squares.

2018 Taiwan TST Round 2, 4

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

1991 AMC 12/AHSME, 5

In the arrow-shaped polygon [see figure], the angles at vertices $A$, $C$, $D$, $E$ and $F$ are right angles, $BC = FG = 5$, $CD = FE = 20$, $DE = 10$, and $AB = AG$. The area of the polygon is closest to [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(10,10), C=(10,5), D=(30,5), E=(30,-5), F=(10,-5), G=(10,-10); draw(A--B--C--D--E--F--G--A); label("$A$", A, W); label("$B$", B, NE); label("$C$", C, S); label("$D$", D, NE); label("$E$", E, SE); label("$F$", F, N); label("$G$", G, SE); label("$5$", (11,7.5)); label("$5$", (11,-7.5)); label("$20$", (C+D)/2, N); label("$20$", (F+E)/2, S); label("$10$", (31,0)); [/asy] $ \textbf{(A)}\ 288\qquad\textbf{(B)}\ 291\qquad\textbf{(C)}\ 294\qquad\textbf{(D)}\ 297\qquad\textbf{(E)}\ 300 $

2010 Tournament Of Towns, 7

A square is divided into congruent rectangles with sides of integer lengths. A rectangle is important if it has at least one point in common with a given diagonal of the square. Prove that this diagonal bisects the total area of the important rectangles

2013 Today's Calculation Of Integral, 865

Find the volume of the solid generated by a rotation of the region enclosed by the curve $y=x^3-x$ and the line $y=x$ about the line $y=x$ as the axis of rotation.

1999 Harvard-MIT Mathematics Tournament, 9

How many ways are there to cover a $3\times 8$ rectangle with $12$ identical dominoes?

2010 Tournament Of Towns, 4

A square board is dissected into $n^2$ rectangular cells by $n-1$ horizontal and $n-1$ vertical lines. The cells are painted alternately black and white in a chessboard pattern. One diagonal consists of $n$ black cells which are squares. Prove that the total area of all black cells is not less than the total area of all white cells.

1999 Switzerland Team Selection Test, 5

In a rectangle $ABCD, M$ and $N$ are the midpoints of $AD$ and $BC$ respectively and $P$ is a point on line $CD$. The line $PM$ meets $AC$ at $Q$. Prove that MN bisects the angle $\angle QNP$.

1992 Romania Team Selection Test, 1

Let $S > 1$ be a real number. The Cartesian plane is partitioned into rectangles whose sides are parallel to the axes of the coordinate system. and whose vertices have integer coordinates. Prove that if the area of each triangle if at most $S$, then for any positive integer $k$ there exist $k$ vertices of these rectangles which lie on a line.

2018 India IMO Training Camp, 1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

2019 India PRMO, 24

A $1 \times n$ rectangle ($n \geq 1 $) is divided into $n$ unit ($1 \times 1$) squares. Each square of this rectangle is colored red, blue or green. Let $f(n)$ be the number of colourings of the rectangle in which there are an even number of red squares. What is the largest prime factor of $f(9)/f(3)$? (The number of red squares can be zero.)

2006 AMC 12/AHSME, 21

Rectangle $ ABCD$ has area 2006. An ellipse with area $ 2006\pi$ passes through $ A$ and $ C$ and has foci at $ B$ and $ D$. What is the perimeter of the rectangle? (The area of an ellipse is $ \pi ab$, where $ 2a$ and $ 2b$ are the lengths of its axes.) $ \textbf{(A) } \frac {16\sqrt {2006}}{\pi} \qquad \textbf{(B) } \frac {1003}4 \qquad \textbf{(C) } 8\sqrt {1003} \qquad \textbf{(D) } 6\sqrt {2006} \qquad \textbf{(E) } \frac {32\sqrt {1003}}\pi$