This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2008 Sharygin Geometry Olympiad, 2

(A.Myakishev) Let triangle $ A_1B_1C_1$ be symmetric to $ ABC$ wrt the incenter of its medial triangle. Prove that the orthocenter of $ A_1B_1C_1$ coincides with the circumcenter of the triangle formed by the excenters of $ ABC$.

2002 India IMO Training Camp, 18

Consider the square grid with $A=(0,0)$ and $C=(n,n)$ at its diagonal ends. Paths from $A$ to $C$ are composed of moves one unit to the right or one unit up. Let $C_n$ (n-th catalan number) be the number of paths from $A$ to $C$ which stay on or below the diagonal $AC$. Show that the number of paths from $A$ to $C$ which cross $AC$ from below at most twice is equal to $C_{n+2}-2C_{n+1}+C_n$

2022 Iran MO (3rd Round), 1

Triangle $ABC$ is assumed. The point $T$ is the second intersection of the symmedian of vertex $A$ with the circumcircle of the triangle $ABC$ and the point $D \neq A$ lies on the line $AC$ such that $BA=BD$. The line that at $D$ tangents to the circumcircle of the triangle $ADT$, intersects the circumcircle of the triangle $DCT$ for the second time at $K$. Prove that $\angle BKC = 90^{\circ}$(The symmedian of the vertex $A$, is the reflection of the median of the vertex $A$ through the angle bisector of this vertex).

2012 Albania National Olympiad, 5

Let $ABC$ be a triangle where $AC\neq BC$. Let $P$ be the foot of the altitude taken from $C$ to $AB$; and let $V$ be the orthocentre, $O$ the circumcentre of $ABC$, and $D$ the point of intersection between the radius $OC$ and the side $AB$. The midpoint of $CD$ is $E$. a) Prove that the reflection $V'$ of $V$ in $AB$ is on the circumcircle of the triangle $ABC$. b) In what ratio does the segment $EP$ divide the segment $OV$?

2015 India Regional MathematicaI Olympiad, 1

Let ABC be a triangle. Let B' and C' denote the reflection of B and C in the internal angle bisector of angle A. Show that the triangles ABC and AB'C' have the same incenter.

2014 Contests, 1

Let $ABC$ be an acute triangle, and let $X$ be a variable interior point on the minor arc $BC$ of its circumcircle. Let $P$ and $Q$ be the feet of the perpendiculars from $X$ to lines $CA$ and $CB$, respectively. Let $R$ be the intersection of line $PQ$ and the perpendicular from $B$ to $AC$. Let $\ell$ be the line through $P$ parallel to $XR$. Prove that as $X$ varies along minor arc $BC$, the line $\ell$ always passes through a fixed point. (Specifically: prove that there is a point $F$, determined by triangle $ABC$, such that no matter where $X$ is on arc $BC$, line $\ell$ passes through $F$.) [i]Robert Simson et al.[/i]

2013 Uzbekistan National Olympiad, 4

Let circles $ \Gamma $ and $ \omega $ are circumcircle and incircle of the triangle $ABC$, the incircle touches sides $BC,CA,AB$ at the points $A_1,B_1,C_1$. Let $A_2$ and $B_2$ lies the lines $A_1I$ and $B_1I$ ($A_1$ and $A_2$ lies different sides from $I$, $B_1$ and $B_2$ lies different sides from $I$) such that $IA_2=IB_2=R$. Prove that : (a) $AA_2=BB_2=IO$; (b) The lines $AA_2$ and $BB_2$ intersect on the circle $ \Gamma ;$

2006 Iran MO (3rd Round), 3

In triangle $ABC$, if $L,M,N$ are midpoints of $AB,AC,BC$. And $H$ is orthogonal center of triangle $ABC$, then prove that \[LH^{2}+MH^{2}+NH^{2}\leq\frac14(AB^{2}+AC^{2}+BC^{2})\]

2024 Sharygin Geometry Olympiad, 5

Points $A', B', C'$ are the reflections of vertices $A, B, C$ about the opposite sidelines of triangle $ABC$. Prove that the circles $AB'C', A'BC',$ and $A'B'C$ have a common point.

Cono Sur Shortlist - geometry, 2012.G6.6

6. Consider a triangle $ABC$ with $1 < \frac{AB}{AC} < \frac{3}{2}$. Let $M$ and $N$, respectively, be variable points of the sides $AB$ and $AC$, different from $A$, such that $\frac{MB}{AC} - \frac{NC}{AB} = 1$. Show that circumcircle of triangle $AMN$ pass through a fixed point different from $A$.

2005 Iran MO (3rd Round), 4

a) Year 1872 Texas 3 gold miners found a peice of gold. They have a coin that with possibility of $\frac 12$ it will come each side, and they want to give the piece of gold to one of themselves depending on how the coin will come. Design a fair method (It means that each of the 3 miners will win the piece of gold with possibility of $\frac 13$) for the miners. b) Year 2005, faculty of Mathematics, Sharif university of Technolgy Suppose $0<\alpha<1$ and we want to find a way for people name $A$ and $B$ that the possibity of winning of $A$ is $\alpha$. Is it possible to find this way? c) Year 2005 Ahvaz, Takhti Stadium Two soccer teams have a contest. And we want to choose each player's side with the coin, But we don't know that our coin is fair or not. Find a way to find that coin is fair or not? d) Year 2005,summer In the National mathematical Oympiad in Iran. Each student has a coin and must find a way that the possibility of coin being TAIL is $\alpha$ or no. Find a way for the student.

2007 Tournament Of Towns, 3

$B$ is a point on the line which is tangent to a circle at the point $A$. The line segment $AB$ is rotated about the centre of the circle through some angle to the line segment $A'B'$. Prove that the line $AA'$ passes through the midpoint of $BB'$.

1988 IMO Longlists, 89

We match sets $ M$ of points in the coordinate plane to sets $ M*$ according to the rule that $ (x*,y*) \in M*$ if and only if $ x \cdot x* \plus{} y \cdot y* \leq 1$ whenever $ (x,y) \in M.$ Find all triangles $ Q$ such that $ Q*$ is the reflection of $ Q$ in the origin.

2009 Sharygin Geometry Olympiad, 5

Given triangle $ ABC$. Point $ O$ is the center of the excircle touching the side $ BC$. Point $ O_1$ is the reflection of $ O$ in $ BC$. Determine angle $ A$ if $ O_1$ lies on the circumcircle of $ ABC$.

2008 India National Olympiad, 1

Let $ ABC$ be triangle, $ I$ its in-center; $ A_1,B_1,C_1$ be the reflections of $ I$ in $ BC, CA, AB$ respectively. Suppose the circum-circle of triangle $ A_1B_1C_1$ passes through $ A$. Prove that $ B_1,C_1,I,I_1$ are concylic, where $ I_1$ is the in-center of triangle $ A_1,B_1,C_1$.

2005 Estonia Team Selection Test, 6

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

1993 China Team Selection Test, 3

Let $ABC$ be a triangle and its bisector at $A$ cuts its circumcircle at $D.$ Let $I$ be the incenter of triangle $ABC,$ $M$ be the midpoint of $BC,$ $P$ is the symmetric to $I$ with respect to $M$ (Assuming $P$ is in the circumcircle). Extend $DP$ until it cuts the circumcircle again at $N.$ Prove that among segments $AN, BN, CN$, there is a segment that is the sum of the other two.

1964 Miklós Schweitzer, 4

Let $ A_1,A_2,...,A_n$ be the vertices of a closed convex $ n$-gon $ K$ numbered consecutively. Show that at least $ n\minus{}3$ vertices $ A_i$ have the property that the reflection of $ A_i$ with respect to the midpoint of $ A_{i\minus{}1}A_{i\plus{}1}$ is contained in $ K$. (Indices are meant $ \textrm{mod} \;n\ .$)

2020 Dutch IMO TST, 2

Given is a triangle $ABC$ with its circumscribed circle and $| AC | <| AB |$. On the short arc $AC$, there is a variable point $D\ne A$. Let $E$ be the reflection of $A$ wrt the inner bisector of $\angle BDC$. Prove that the line $DE$ passes through a fixed point, regardless of point $D$.

2001 USAMO, 6

Each point in the plane is assigned a real number such that, for any triangle, the number at the center of its inscribed circle is equal to the arithmetic mean of the three numbers at its vertices. Prove that all points in the plane are assigned the same number.

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle with $AB>AC$, let $I$ be the center of the incircle. Let $M,N$ be the midpoint of $AC$ and $AB$ respectively. $D,E$ are on $AC$ and $AB$ respectively such that $BD\parallel IM$ and $CE\parallel IN$. A line through $I$ parallel to $DE$ intersects $BC$ in $P$. Let $Q$ be the projection of $P$ on line $AI$. Prove that $Q$ is on the circumcircle of $\triangle ABC$.

2013 Turkey MO (2nd round), 1

The circle $\omega_1$ with diameter $[AB]$ and the circle $\omega_2$ with center $A$ intersects at points $C$ and $D$. Let $E$ be a point on the circle $\omega_2$, which is outside $\omega_1$ and at the same side as $C$ with respect to the line $AB$. Let the second point of intersection of the line $BE$ with $\omega_2$ be $F$. For a point $K$ on the circle $\omega_1$ which is on the same side as $A$ with respect to the diameter of $\omega_1$ passing through $C$ we have $2\cdot CK \cdot AC = CE \cdot AB$. Let the second point of intersection of the line $KF$ with $\omega_1$ be $L$. Show that the symmetric of the point $D$ with respect to the line $BE$ is on the circumcircle of the triangle $LFC$.

2014 Contests, 2

Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.

Geometry Mathley 2011-12, 6.4

Let $P$ be an arbitrary variable point in the plane of a triangle $ABC. A_1$ is the projection of $P$ onto $BC, A_2$ is the midpoint of line segment $PA_1, A_2P$ meets $BC$ at $A_3, A_4$ is the reflection of $P$ about $A_3$. Prove that $PA_4$ has a fixed point. Trần Quang Hùng