This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2005 Danube Mathematical Olympiad, 3

Let $\mathcal{C}$ be a circle with center $O$, and let $A$ be a point outside the circle. Let the two tangents from the point $A$ to the circle $\mathcal{C}$ meet this circle at the points $S$ and $T$, respectively. Given a point $M$ on the circle $\mathcal{C}$ which is different from the points $S$ and $T$, let the line $MA$ meet the perpendicular from the point $S$ to the line $MO$ at $P$. Prove that the reflection of the point $S$ in the point $P$ lies on the line $MT$.

2012 USA Team Selection Test, 2

In cyclic quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $P$. Let $E$ and $F$ be the respective feet of the perpendiculars from $P$ to lines $AB$ and $CD$. Segments $BF$ and $CE$ meet at $Q$. Prove that lines $PQ$ and $EF$ are perpendicular to each other.

2017 AMC 12/AHSME, 13

In the figure below, $3$ of the $6$ disks are to be painted blue, $2$ are to be painted red, and $1$ is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible? [asy] size(100); pair A, B, C, D, E, F; A = (0,0); B = (1,0); C = (2,0); D = rotate(60, A)*B; E = B + D; F = rotate(60, A)*C; draw(Circle(A, 0.5)); draw(Circle(B, 0.5)); draw(Circle(C, 0.5)); draw(Circle(D, 0.5)); draw(Circle(E, 0.5)); draw(Circle(F, 0.5)); [/asy] $\textbf{(A) } 6 \qquad \textbf{(B) } 8 \qquad \textbf{(C) } 9 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15$

2007 South East Mathematical Olympiad, 2

$AB$ is the diameter of semicircle $O$. $C$,$D$ are two arbitrary points on semicircle $O$. Point $P$ lies on line $CD$ such that line $PB$ is tangent to semicircle $O$ at $B$. Line $PO$ intersects line $CA$, $AD$ at point $E$, $F$ respectively. Prove that $OE$=$OF$.

2021 Taiwan TST Round 2, G

Let $ABC$ be a triangle with circumcircle $\Gamma$, and points $E$ and $F$ are chosen from sides $CA$, $AB$, respectively. Let the circumcircle of triangle $AEF$ and $\Gamma$ intersect again at point $X$. Let the circumcircles of triangle $ABE$ and $ACF$ intersect again at point $K$. Line $AK$ intersect with $\Gamma$ again at point $M$ other than $A$, and $N$ be the reflection point of $M$ with respect to line $BC$. Let $XN$ intersect with $\Gamma$ again at point $S$ other that $X$. Prove that $SM$ is parallel to $BC$. [i] Proposed by Ming Hsiao[/i]

2010 Serbia National Math Olympiad, 2

In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. [i]Proposed by Marko Djikic[/i]

2001 Tournament Of Towns, 3

Point $A$ lies inside an angle with vertex $M$. A ray issuing from point $A$ is reflected in one side of the angle at point $B$, then in the other side at point $C$ and then returns back to point $A$ (the ordinary rule of reflection holds). Prove that the center of the circle circumscribed about triangle $\triangle BCM$ lies on line $AM$.

2009 China Team Selection Test, 2

In acute triangle $ ABC,$ points $ P,Q$ lie on its sidelines $ AB,AC,$ respectively. The circumcircle of triangle $ ABC$ intersects of triangle $ APQ$ at $ X$ (different from $ A$). Let $ Y$ be the reflection of $ X$ in line $ PQ.$ Given $ PX>PB.$ Prove that $ S_{\bigtriangleup XPQ}>S_{\bigtriangleup YBC}.$ Where $ S_{\bigtriangleup XYZ}$ denotes the area of triangle $ XYZ.$

2010 Contests, 2

In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. [i]Proposed by Marko Djikic[/i]

2020 Cono Sur Olympiad, 4

Let $ABC$ be an acute scalene triangle. $D$ and $E$ are variable points in the half-lines $AB$ and $AC$ (with origin at $A$) such that the symmetric of $A$ over $DE$ lies on $BC$. Let $P$ be the intersection of the circles with diameter $AD$ and $AE$. Find the locus of $P$ when varying the line segment $DE$.

2013 ELMO Shortlist, 12

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$. [i]Proposed by David Stoner[/i]

2013 Harvard-MIT Mathematics Tournament, 9

I have $8$ unit cubes of different colors, which I want to glue together into a $2\times 2\times 2$ cube. How many distinct $2\times 2\times 2$ cubes can I make? Rotations of the same cube are not considered distinct, but reflections are.

2009 Macedonia National Olympiad, 2

Let $O$ be the centre of the incircle of $\triangle ABC$. Points $K,L$ are the intersection points of the circles circumscribed about triangles $BOC,AOC$ respectively with the bisectors of the angles at $A,B$ respectively $(K,L\not= O)$. Also $P$ is the midpoint of segment $KL$, $M$ is the reflection of $O$ with respect to $P$ and $N$ is the reflection of $O$ with respect to line $KL$. Prove that the points $K,L,M$ and $N$ lie on the same circle.

2015 SGMO, Q3

For all nonempty finite sets of point $S$ on the plane satisfying: $|S|$ is even and for all partitions of $S$ into two subsets $A,B$ of equal size, there is a reflection that maps $A$ to $B$.

1994 Vietnam National Olympiad, 2

$ABC$ is a triangle. Reflect each vertex in the opposite side to get the triangle $A'B'C'$. Find a necessary and sufficient condition on $ABC$ for $A'B'C'$ to be equilateral.

2012 Romanian Master of Mathematics, 6

Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$. [i](Russia) Fedor Ivlev[/i]

2012 NIMO Problems, 8

Concentric circles $\Omega_1$ and $\Omega_2$ with radii $1$ and $100$, respectively, are drawn with center $O$. Points $A$ and $B$ are chosen independently at random on the circumferences of $\Omega_1$ and $\Omega_2$, respectively. Denote by $\ell$ the tangent line to $\Omega_1$ passing through $A$, and denote by $P$ the reflection of $B$ across $\ell$. Compute the expected value of $OP^2$. [i]Proposed by Lewis Chen[/i]

2012 Iran MO (2nd Round), 3

The incircle of triangle $ABC$, is tangent to sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. The reflection of $F$ with respect to $B$ and the reflection of $E$ with respect to $C$ are $T$ and $S$ respectively. Prove that the incenter of triangle $AST$ is inside or on the incircle of triangle $ABC$. [i]Proposed by Mehdi E'tesami Fard[/i]

2005 Taiwan TST Round 3, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2020 Iranian Geometry Olympiad, 2

Let $\triangle ABC$ be an acute-angled triangle with its incenter $I$. Suppose that $N$ is the midpoint of the arc $\overarc{BAC}$ of the circumcircle of triangle $\triangle ABC$, and $P$ is a point such that $ABPC$ is a parallelogram.Let $Q$ be the reflection of $A$ over $N$ and $R$ the projection of $A$ on $\overline{QI}$. Show that the line $\overline{AI}$ is tangent to the circumcircle of triangle $\triangle PQR$ [i]Proposed by Patrik Bak - Slovakia[/i]

2025 India STEMS Category A, 3

Let $ABC$ be an acute scalene triangle with orthocenter $H$. Let $M$ be the midpoint of $BC$. $N$ is the point on line $AM$ such that $(BMN)$ is tangent to $AB$. Finally, let $H'$ be the reflection of $H$ in $B$. Prove that $\angle ANH'=90^{\circ}$. [i]Proposed by Malay Mahajan and Siddharth Choppara[/i]

2012 IMO Shortlist, G2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.

2007 Kyiv Mathematical Festival, 2

The point $D$ at the side $AB$ of triangle $ABC$ is given. Construct points $E,F$ at sides $BC, AC$ respectively such that the midpoints of $DE$ and $DF$ are collinear with $B$ and the midpoints of $DE$ and $EF$ are collinear with $C.$

2011 India IMO Training Camp, 1

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

2010 Costa Rica - Final Round, 5

Let $C_1$ be a circle with center $O$ and let $B$ and $C$ be points in $C_1$ such that $BOC$ is an equilateral triangle. Let $D$ be the midpoint of the minor arc $BC$ of $C_1$. Let $C_2$ be the circle with center $C$ that passes through $B$ and $O$. Let $E$ be the second intersection of $C_1$ and $C_2$. The parallel to $DE$ through $B$ intersects $C_1$ for second time in $A$. Let $C_3$ be the circumcircle of triangle $AOC$. The second intersection of $C_2$ and $C_3$ is $F$. Show that $BE$ and $BF$ trisect the angle $\angle ABC$.