This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

1963 Putnam, A2

Let $f:\mathbb{N}\rightarrow \mathbb{N}$ be a strictly increasing function such that $f(2)=2$ and $f(mn)=f(m)f(n)$ for every pair of relatively prime positive integers $m$ and $n$. Prove that $f(n)=n$ for every positive integer $n$.

2009 China Team Selection Test, 3

Let $ (a_{n})_{n\ge 1}$ be a sequence of positive integers satisfying $ (a_{m},a_{n}) = a_{(m,n)}$ (for all $ m,n\in N^ +$). Prove that for any $ n\in N^ + ,\prod_{d|n}{a_{d}^{\mu (\frac {n}{d})}}$ is an integer. where $ d|n$ denotes $ d$ take all positive divisors of $ n.$ Function $ \mu (n)$ is defined as follows: if $ n$ can be divided by square of certain prime number, then $ \mu (1) = 1;\mu (n) = 0$; if $ n$ can be expressed as product of $ k$ different prime numbers, then $ \mu (n) = ( - 1)^k.$

2010 AIME Problems, 4

Dave arrives at an airport which has twelve gates arranged in a straight line with exactly $ 100$ feet between adjacent gates. His departure gate is assigned at random. After waiting at that gate, Dave is told the departure gate has been changed to a different gate, again at random. Let the probability that Dave walks $ 400$ feet or less to the new gate be a fraction $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.

2008 ITest, 59

Let $a$ and $b$ be relatively prime positive integers such that \[\dfrac ab=\dfrac1{2^1}+\dfrac2{3^2}+\dfrac3{2^3}+\dfrac4{3^4}+\dfrac5{2^5}+\dfrac6{3^6}+\cdots,\] where the numerators always increase by $1$, and the denominators alternate between powers of $2$ and $3$, with exponents also increasing by $1$ for each subsequent term. Compute $a+b$.

2009 Purple Comet Problems, 4

There are three bags of marbles. Bag two has twice as many marbles as bag one. Bag three has three times as many marbles as bag one. Half the marbles in bag one, one third the marbles in bag two, and one fourth the marbles in bag three are green. If all three bags of marbles are dumped into a single pile, $\frac{m}{n}$ of the marbles in the pile would be green where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

2014 Contests, 3

Suppose that $m$ and $n$ are relatively prime positive integers with $A = \tfrac mn$, where \[ A = \frac{2+4+6+\dots+2014}{1+3+5+\dots+2013} - \frac{1+3+5+\dots+2013}{2+4+6+\dots+2014}. \] Find $m$. In other words, find the numerator of $A$ when $A$ is written as a fraction in simplest form. [i]Proposed by Evan Chen[/i]

2014 AMC 12/AHSME, 24

Let $ABCDE$ be a pentagon inscribed in a circle such that $AB=CD=3$, $BC=DE=10$, and $AE=14$. The sum of the lengths of all diagonals of $ABCDE$ is equal to $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? $\textbf{(A) }129\qquad \textbf{(B) }247\qquad \textbf{(C) }353\qquad \textbf{(D) }391\qquad \textbf{(E) }421\qquad$

1990 IMO Longlists, 37

An eccentric mathematician has a ladder with $ n$ rungs that he always ascends and descends in the following way: When he ascends, each step he takes covers $ a$ rungs of the ladder, and when he descends, each step he takes covers $ b$ rungs of the ladder, where $ a$ and $ b$ are fixed positive integers. By a sequence of ascending and descending steps he can climb from ground level to the top rung of the ladder and come back down to ground level again. Find, with proof, the minimum value of $ n,$ expressed in terms of $ a$ and $ b.$

2012 Cono Sur Olympiad, 3

3. Show that there do not exist positive integers $a$, $b$, $c$ and $d$, pairwise co-prime, such that $ab+cd$, $ac+bd$ and $ad+bc$ are odd divisors of the number $(a+b-c-d)(a-b+c-d)(a-b-c+d)$.

PEN J Problems, 5

If $n$ is composite, prove that $\phi(n) \le n- \sqrt{n}$.

2004 Romania Team Selection Test, 13

Let $m\geq 2$ be an integer. A positive integer $n$ has the property that for any positive integer $a$ coprime with $n$, we have $a^m - 1\equiv 0 \pmod n$. Prove that $n \leq 4m(2^m-1)$. Created by Harazi, modified by Marian Andronache.

2002 AIME Problems, 13

In triangle $ABC,$ point $D$ is on $\overline{BC}$ with $CD=2$ and $DB=5,$ point $E$ is on $\overline{AC}$ with $CE=1$ and $EA=3,$ $AB=8,$ and $\overline{AD}$ and $\overline{BE}$ intersect at $P.$ Points $Q$ and $R$ lie on $\overline{AB}$ so that $\overline{PQ}$ is parallel to $\overline{CA}$ and $\overline{PR}$ is parallel to $\overline{CB}.$ It is given that the ratio of the area of triangle $PQR$ to the area of triangle $ABC$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2005 AIME Problems, 3

An infinite geometric series has sum $2005$. A new series, obtained by squaring each term of the original series, has $10$ times the sum of the original series. The common ratio of the original series is $\frac{m}{n}$ where $m$ and $n$ are relatively prime integers. Find $m+n$.

1993 AIME Problems, 15

Let $\overline{CH}$ be an altitude of $\triangle ABC$. Let $R$ and $S$ be the points where the circles inscribed in the triangles $ACH$ and $BCH$ are tangent to $\overline{CH}$. If $AB = 1995$, $AC = 1994$, and $BC = 1993$, then $RS$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime integers. Find $m + n$

2019 Serbia National Math Olympiad, 1

Find all positive integers $n, n>1$ for wich holds : If $a_1, a_2 ,\dots ,a_k$ are all numbers less than $n$ and relatively prime to $n$ , and holds $a_1<a_2<\dots <a_k $, then none of sums $a_i+a_{i+1}$ for $i=1,2,3,\dots k-1 $ are divisible by $3$.

2004 AIME Problems, 13

The polynomial \[P(x)=(1+x+x^2+\cdots+x^{17})^2-x^{17}\] has 34 complex roots of the form $z_k=r_k[\cos(2\pi a_k)+i\sin(2\pi a_k)], k=1, 2, 3,\ldots, 34$, with $0<a_1\le a_2\le a_3\le\cdots\le a_{34}<1$ and $r_k>0$. Given that $a_1+a_2+a_3+a_4+a_5=m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

PEN J Problems, 6

Show that if $m$ and $n$ are relatively prime positive integers, then $\phi( 5^m -1) \neq 5^{n}-1$.

2013 Purple Comet Problems, 23

The diagram below shows the regular hexagon $BCEGHJ$ surrounded by the rectangle $ADFI$. Let $\theta$ be the measure of the acute angle between the side $\overline{EG}$ of the hexagon and the diagonal of the rectangle $\overline{AF}$. There are relatively prime positive integers $m$ and $n$ so that $\sin^2\theta  = \tfrac{m}{n}$. Find $m + n$. [asy] import graph; size(3.2cm); real labelscalefactor = 0.5; pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((-1,3)--(-1,2)--(-0.13,1.5)--(0.73,2)--(0.73,3)--(-0.13,3.5)--cycle); draw((-1,3)--(-1,2)); draw((-1,2)--(-0.13,1.5)); draw((-0.13,1.5)--(0.73,2)); draw((0.73,2)--(0.73,3)); draw((0.73,3)--(-0.13,3.5)); draw((-0.13,3.5)--(-1,3)); draw((-1,3.5)--(0.73,3.5)); draw((0.73,3.5)--(0.73,1.5)); draw((-1,1.5)--(0.73,1.5)); draw((-1,3.5)--(-1,1.5)); label("$ A $",(-1.4,3.9),SE*labelscalefactor); label("$ B $",(-1.4,3.28),SE*labelscalefactor); label("$ C $",(-1.4,2.29),SE*labelscalefactor); label("$ D $",(-1.4,1.45),SE*labelscalefactor); label("$ E $",(-0.3,1.4),SE*labelscalefactor); label("$ F $",(0.8,1.45),SE*labelscalefactor); label("$ G $",(0.8,2.24),SE*labelscalefactor); label("$ H $",(0.8,3.26),SE*labelscalefactor); label("$ I $",(0.8,3.9),SE*labelscalefactor); label("$ J $",(-0.25,3.9),SE*labelscalefactor); [/asy]

1991 IMO Shortlist, 12

Let $ S \equal{} \{1,2,3,\cdots ,280\}$. Find the smallest integer $ n$ such that each $ n$-element subset of $ S$ contains five numbers which are pairwise relatively prime.

2000 Harvard-MIT Mathematics Tournament, 40

Let $\phi(n)$ denote the number of positive integers less than or equal to $n$ and relatively prime to $n$. Find all natural numbers $n$ and primes $p$ such that $\phi(n)=\phi(np)$.

2013 Purple Comet Problems, 9

$|5x^2-\tfrac25|\le|x-8|$ if and only if $x$ is in the interval $[a, b]$. There are relatively prime positive integers $m$ and $n$ so that $b -a =\tfrac{m}{n}$ . Find $m + n$.

2008 Balkan MO Shortlist, N2

Let $ c$ be a positive integer. The sequence $ a_1,a_2,\ldots$ is defined as follows $ a_1\equal{}c$, $ a_{n\plus{}1}\equal{}a_n^2\plus{}a_n\plus{}c^3$ for all positive integers $ n$. Find all $ c$ so that there are integers $ k\ge1$ and $ m\ge2$ so that $ a_k^2\plus{}c^3$ is the $ m$th power of some integer.

2001 All-Russian Olympiad, 4

Find all odd positive integers $ n > 1$ such that if $ a$ and $ b$ are relatively prime divisors of $ n$, then $ a\plus{}b\minus{}1$ divides $ n$.

2005 China Western Mathematical Olympiad, 3

Set $S = \{1, 2, 3, ..., 2005\}$. If among any $n$ pairwise coprime numbers in $S$ there exists at least a prime number, find the minimum of $n$.

1971 IMO, 3

Prove that we can find an infinite set of positive integers of the from $2^n-3$ (where $n$ is a positive integer) every pair of which are relatively prime.