This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 567

2005 MOP Homework, 1

Two rooks on a chessboard are said to be attacking each other if they are placed in the same row or column of the board. (a) There are eight rooks on a chessboard, none of them attacks any other. Prove that there is an even number of rooks on black fields. (b) How many ways can eight mutually non-attacking rooks be placed on the 9 £ 9 chessboard so that all eight rooks are on squares of the same color.

2006 Romania Team Selection Test, 1

Let $ABC$ and $AMN$ be two similar triangles with the same orientation, such that $AB=AC$, $AM=AN$ and having disjoint interiors. Let $O$ be the circumcenter of the triangle $MAB$. Prove that the points $O$, $C$, $N$, $A$ lie on the same circle if and only if the triangle $ABC$ is equilateral. [i]Valentin Vornicu[/i]

2011 Iran MO (3rd Round), 1

A regular dodecahedron is a convex polyhedra that its faces are regular pentagons. The regular dodecahedron has twenty vertices and there are three edges connected to each vertex. Suppose that we have marked ten vertices of the regular dodecahedron. [b]a)[/b] prove that we can rotate the dodecahedron in such a way that at most four marked vertices go to a place that there was a marked vertex before. [b]b)[/b] prove that the number four in previous part can't be replaced with three. [i]proposed by Kasra Alishahi[/i]

2010 Purple Comet Problems, 22

Ten distinct points are placed on a circle. All ten of the points are paired so that the line segments connecting the pairs do not intersect. In how many different ways can this pairing be done? [asy] import graph; size(12cm); real labelscalefactor = 0.5; pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); pen dotstyle = black; draw((2.46,0.12)--(3.05,-0.69)); draw((2.46,1.12)--(4,-1)); draw((5.54,0.12)--(4.95,-0.69)); draw((3.05,1.93)--(5.54,1.12)); draw((4.95,1.93)--(4,2.24)); draw((8.05,1.93)--(7.46,1.12)); draw((7.46,0.12)--(8.05,-0.69)); draw((9,2.24)--(9,-1)); draw((9.95,-0.69)--(9.95,1.93)); draw((10.54,1.12)--(10.54,0.12)); draw((15.54,1.12)--(15.54,0.12)); draw((14.95,-0.69)--(12.46,0.12)); draw((13.05,-0.69)--(14,-1)); draw((12.46,1.12)--(14.95,1.93)); draw((14,2.24)--(13.05,1.93)); label("1",(-1.08,2.03),SE*labelscalefactor); label("2",(-0.3,1.7),SE*labelscalefactor); label("3",(0.05,1.15),SE*labelscalefactor); label("4",(0.00,0.38),SE*labelscalefactor); label("5",(-0.33,-0.12),SE*labelscalefactor); label("6",(-1.08,-0.4),SE*labelscalefactor); label("7",(-1.83,-0.19),SE*labelscalefactor); label("8",(-2.32,0.48),SE*labelscalefactor); label("9",(-2.3,1.21),SE*labelscalefactor); label("10",(-1.86,1.75),SE*labelscalefactor); dot((-1,-1),dotstyle); dot((-0.05,-0.69),dotstyle); dot((0.54,0.12),dotstyle); dot((0.54,1.12),dotstyle); dot((-0.05,1.93),dotstyle); dot((-1,2.24),dotstyle); dot((-1.95,1.93),dotstyle); dot((-2.54,1.12),dotstyle); dot((-2.54,0.12),dotstyle); dot((-1.95,-0.69),dotstyle); dot((4,-1),dotstyle); dot((4.95,-0.69),dotstyle); dot((5.54,0.12),dotstyle); dot((5.54,1.12),dotstyle); dot((4.95,1.93),dotstyle); dot((4,2.24),dotstyle); dot((3.05,1.93),dotstyle); dot((2.46,1.12),dotstyle); dot((2.46,0.12),dotstyle); dot((3.05,-0.69),dotstyle); dot((9,-1),dotstyle); dot((9.95,-0.69),dotstyle); dot((10.54,0.12),dotstyle); dot((10.54,1.12),dotstyle); dot((9.95,1.93),dotstyle); dot((9,2.24),dotstyle); dot((8.05,1.93),dotstyle); dot((7.46,1.12),dotstyle); dot((7.46,0.12),dotstyle); dot((8.05,-0.69),dotstyle); dot((14,-1),dotstyle); dot((14.95,-0.69),dotstyle); dot((15.54,0.12),dotstyle); dot((15.54,1.12),dotstyle); dot((14.95,1.93),dotstyle); dot((14,2.24),dotstyle); dot((13.05,1.93),dotstyle); dot((12.46,1.12),dotstyle); dot((12.46,0.12),dotstyle); dot((13.05,-0.69),dotstyle);[/asy]

2007 AIME Problems, 12

Tags: geometry , rotation
In isosceles triangle $ABC$, $A$ is located at the origin and $B$ is located at $(20, 0)$. Point $C$ is in the first quadrant with $AC = BC$ and $\angle BAC = 75^\circ$. If $\triangle ABC$ is rotated counterclockwise about point $A$ until the image of $C$ lies on the positive y-axis, the area of the region common to the original and the rotated triangle is in the form $p\sqrt{2}+q\sqrt{3}+r\sqrt{6}+s$ where $p$, $q$, $r$, $s$ are integers. Find $(p-q+r-s)/2$.

2022 Rioplatense Mathematical Olympiad, 2

Let $m,n\geq 2$. One needs to cover the table $m \times n$ using only the following tiles: Tile 1 - A square $2 \times 2$. Tile 2 - A L-shaped tile with five cells, in other words, the square $3 \times 3$ [b]without[/b] the upper right square $2 \times 2$. Each tile 1 covers exactly $4$ cells and each tile 2 covers exactly $5$ cells. Rotation is allowed. Determine all pairs $(m,n)$, such that the covering is possible.

2013 All-Russian Olympiad, 2

Circle is divided into $n$ arcs by $n$ marked points on the circle. After that circle rotate an angle $ 2\pi k/n $ (for some positive integer $ k $), marked points moved to $n$ [i] new points [/i], dividing the circle into $ n $ [i] new arcs[/i]. Prove that there is a new arc that lies entirely in the one of the old arсs. (It is believed that the endpoints of arcs belong to it.) [i]I. Mitrophanov[/i]

2013 Princeton University Math Competition, 2

How many ways are there to color the edges of a hexagon orange and black if we assume that two hexagons are indistinguishable if one can be rotated into the other? Note that we are saying the colorings OOBBOB and BOBBOO are distinct; we ignore flips.

STEMS 2022 Math Cat A Qualifier Round, 3

We call a path Valid if i. It only comprises of the following kind of steps: A. $(x, y) \rightarrow (x + 1, y + 1)$ B. $(x, y) \rightarrow (x + 1, y - 1)$ ii. It never goes below the x-axis. Let $M(n)$ = set of all valid paths from $(0,0) $, to $(2n,0)$, where $n$ is a natural number. Consider a Valid path $T \in M(n)$. Denote $\phi(T) = \prod_{i=1}^{2n} \mu_i$, where $\mu_i$= a) $1$, if the $i^{th}$ step is $(x, y) \rightarrow (x + 1, y + 1)$ b) $y$, if the $i^{th} $ step is $(x, y) \rightarrow (x + 1, y - 1)$ Now Let $f(n) =\sum _{T \in M(n)} \phi(T)$. Evaluate the number of zeroes at the end in the decimal expansion of $f(2021)$

2010 Paraguay Mathematical Olympiad, 2

Tags: rotation
A series of figures is shown in the picture below, each one of them created by following a secret rule. If the leftmost figure is considered the first figure, how many squares will the 21st figure have? [img]http://www.artofproblemsolving.com/Forum/download/file.php?id=49934[/img] Note: only the little squares are to be counted (i.e., the $2 \times 2$ squares, $3 \times 3$ squares, $\dots$ should not be counted) Extra (not part of the original problem): How many squares will the 21st figure have, if we consider all $1 \times 1$ squares, all $2 \times 2$ squares, all $3 \times 3$ squares, and so on?.

2013 Princeton University Math Competition, 4

Tags: rotation , geometry
Draw an equilateral triangle with center $O$. Rotate the equilateral triangle $30^\circ, 60^\circ, 90^\circ$ with respect to $O$ so there would be four congruent equilateral triangles on each other. Look at the diagram. If the smallest triangle has area $1$, the area of the original equilateral triangle could be expressed as $p+q\sqrt r$ where $p,q,r$ are positive integers and $r$ is not divisible by a square greater than $1$. Find $p+q+r$.

2013 AMC 12/AHSME, 23

$ ABCD$ is a square of side length $ \sqrt{3} + 1 $. Point $ P $ is on $ \overline{AC} $ such that $ AP = \sqrt{2} $. The square region bounded by $ ABCD $ is rotated $ 90^{\circ} $ counterclockwise with center $ P $, sweeping out a region whose area is $ \frac{1}{c} (a \pi + b) $, where $a $, $b$, and $ c $ are positive integers and $ \text{gcd}(a,b,c) = 1 $. What is $ a + b + c $? $\textbf{(A)} \ 15 \qquad \textbf{(B)} \ 17 \qquad \textbf{(C)} \ 19 \qquad \textbf{(D)} \ 21 \qquad \textbf{(E)} \ 23 $

2014 AMC 10, 14

The $y$-intercepts, $P$ and $Q$, of two perpendicular lines intersecting at the point $A(6,8)$ have a sum of zero. What is the area of $\triangle APQ$? $ \textbf{(A)}\ 45\qquad\textbf{(B)}\ 48\qquad\textbf{(C)}\ 54\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 72 $

2006 China Team Selection Test, 3

$d$ and $n$ are positive integers such that $d \mid n$. The n-number sets $(x_1, x_2, \cdots x_n)$ satisfy the following condition: (1) $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq n$ (2) $d \mid (x_1+x_2+ \cdots x_n)$ Prove that in all the n-number sets that meet the conditions, there are exactly half satisfy $x_n=n$.

2011 Bosnia And Herzegovina - Regional Olympiad, 3

Triangle $AOB$ is rotated in plane around point $O$ for $90^{\circ}$ and it maps in triangle $A_1OB_1$ ($A$ maps to $A_1$, $B$ maps to $B_1$). Prove that median of triangle $OAB_1$ of side $AB_1$ is orthogonal to $A_1B$

2009 AMC 12/AHSME, 23

A region $ S$ in the complex plane is defined by \[ S \equal{} \{x \plus{} iy: \minus{} 1\le x\le1, \minus{} 1\le y\le1\}.\] A complex number $ z \equal{} x \plus{} iy$ is chosen uniformly at random from $ S$. What is the probability that $ \left(\frac34 \plus{} \frac34i\right)z$ is also in $ S$? $ \textbf{(A)}\ \frac12\qquad \textbf{(B)}\ \frac23\qquad \textbf{(C)}\ \frac34\qquad \textbf{(D)}\ \frac79\qquad \textbf{(E)}\ \frac78$

1996 AMC 12/AHSME, 9

Tags: rotation , geometry
Triangle $PAB$ and square $ABCD$ are in perpendicular planes. Given that $PA = 3, PB = 4,$ and $AB = 5$, what is $PD$? $\textbf{(A)}\ 5 \qquad \textbf{(B)}\ \sqrt{34} \qquad \textbf{(C)}\ \sqrt{41} \qquad \textbf{(D)}\ 2\sqrt{13} \qquad \textbf{(E)}\ 8$

1989 China Team Selection Test, 4

Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.

2006 Iran MO (3rd Round), 2

$n$ is a natural number that $\frac{x^{n}+1}{x+1}$ is irreducible over $\mathbb Z_{2}[x]$. Consider a vector in $\mathbb Z_{2}^{n}$ that it has odd number of $1$'s (as entries) and at least one of its entries are $0$. Prove that these vector and its translations are a basis for $\mathbb Z_{2}^{n}$

2016 AMC 10, 16

Tags: rotation
A triangle with vertices $A(0, 2)$, $B(-3, 2)$, and $C(-3, 0)$ is reflected about the $x$-axis, then the image $\triangle A'B'C'$ is rotated counterclockwise about the origin by $90^{\circ}$ to produce $\triangle A''B''C''$. Which of the following transformations will return $\triangle A''B''C''$ to $\triangle ABC$? $\textbf{(A)}$ counterclockwise rotation about the origin by $90^{\circ}$. $\textbf{(B)}$ clockwise rotation about the origin by $90^{\circ}$. $\textbf{(C)}$ reflection about the $x$-axis $\textbf{(D)}$ reflection about the line $y = x$ $\textbf{(E)}$ reflection about the $y$-axis.

2006 Estonia Math Open Senior Contests, 6

Kati cut two equal regular $ n\minus{}gons$ out of paper. To the vertices of both $ n\minus{}gons$, she wrote the numbers 1 to $ n$ in some order. Then she stabbed a needle through the centres of these $ n\minus{}gons$ so that they could be rotated with respect to each other. Kati noticed that there is a position where the numbers at each pair of aligned vertices are different. Prove that the $ n\minus{}gons$ can be rotated to a position where at least two pairs of aligned vertices contain equal numbers.

2023 USAJMO, 3

Consider an $n$-by-$n$ board of unit squares for some odd positive integer $n$. We say that a collection $C$ of identical dominoes is a [i]maximal grid-aligned configuration[/i] on the board if $C$ consists of $(n^2-1)/2$ dominoes where each domino covers exactly two neighboring squares and the dominoes don't overlap: $C$ then covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with another square uncovered. Let $k(C)$ be the number of distinct maximal grid-aligned configurations obtainable from $C$ by repeatedly sliding dominoes. Find the maximum value of $k(C)$ as a function of $n$. [i]Proposed by Holden Mui[/i]

2015 AMC 10, 14

The diagram below shows the circular face of a clock with radius $20$ cm and a circular disk with radius $10$ cm externally tangent to the clock face at $12$ o'clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction? [asy] size(170); defaultpen(linewidth(0.9)+fontsize(13pt)); draw(unitcircle^^circle((0,1.5),0.5)); path arrow = origin--(-0.13,-0.35)--(-0.06,-0.35)--(-0.06,-0.7)--(0.06,-0.7)--(0.06,-0.35)--(0.13,-0.35)--cycle; for(int i=1;i<=12;i=i+1) { draw(0.9*dir(90-30*i)--dir(90-30*i)); label("$"+(string) i+"$",0.78*dir(90-30*i)); } dot(origin); draw(shift((0,1.87))*arrow); draw(arc(origin,1.5,68,30),EndArrow(size=12));[/asy] $ \textbf{(A) }\text{2 o'clock} \qquad\textbf{(B) }\text{3 o'clock} \qquad\textbf{(C) }\text{4 o'clock} \qquad\textbf{(D) }\text{6 o'clock} \qquad\textbf{(E) }\text{8 o'clock} $

2010 Tournament Of Towns, 5

A needle (a segment) lies on a plane. One can rotate it $45^{\circ}$ round any of its endpoints. Is it possible that after several rotations the needle returns to initial position with the endpoints interchanged?

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.