This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2020 Moldova EGMO TST, 3

Tags: algebra , sequence
Let the sequence $a_n$, $n\geq2$, $a_n=\frac{\sqrt[3]{n^3+n^2-n-1}}{n} $. Find the greatest natural number $k$ ,such that $a_2 \cdot a_3 \cdot . . .\cdot a_k <8$

2022 Belarus - Iran Friendly Competition, 1

Do there exist a sequence $a_1, a_2, \ldots , a_n, \ldots$ of positive integers such that for any positive integers $i, j$: $$d(a_i + a_j ) = i + j?$$ Here $d(n)$ is the number of positive divisors of a positive integer

2016 Bosnia And Herzegovina - Regional Olympiad, 1

Tags: limit , sequence , algebra
Let $a_1=1$ and $a_{n+1}=a_{n}+\frac{1}{2a_n}$ for $n \geq 1$. Prove that $a)$ $n \leq a_n^2 < n + \sqrt[3]{n}$ $b)$ $\lim_{n\to\infty} (a_n-\sqrt{n})=0$

1974 Poland - Second Round, 5

Tags: algebra , sequence , limit
The given numbers are real numbers $ q,t \in \langle \frac{1}{2}; 1) $, $ t \in (0; 1 \rangle $. Prove that there is an increasing sequence of natural numbers $ {n_k} $ ($ k = 1,2, \ldots $) such that $$ t = \lim_{N\to \infty} \sum_{j=1}^N q^{n_j}.$$

2003 District Olympiad, 2

Let be two distinct continuous functions $ f,g:[0,1]\longrightarrow (0,\infty ) $ corelated by the equality $ \int_0^1 f(x)dx =\int_0^1 g(x)dx , $ and define the sequence $ \left( x_n \right)_{n\ge 0} $ as $$ x_n=\int_0^1 \frac{\left( f(x) \right)^{n+1}}{\left( g(x) \right)^n} dx . $$ [b]a)[/b] Show that $ \infty =\lim_{n\to\infty} x_n. $ [b]b)[/b] Demonstrate that the sequence $ \left( x_n \right)_{n\ge 0} $ is monotone.

2013 German National Olympiad, 6

Define a sequence $(a_n)$ by $a_1 =1, a_2 =2,$ and $a_{k+2}=2a_{k+1}+a_k$ for all positive integers $k$. Determine all real numbers $\beta >0$ which satisfy the following conditions: (A) There are infinitely pairs of positive integers $(p,q)$ such that $\left| \frac{p}{q}- \sqrt{2} \, \right| < \frac{\beta}{q^2 }.$ (B) There are only finitely many pairs of positive integers $(p,q)$ with $\left| \frac{p}{q}- \sqrt{2} \,\right| < \frac{\beta}{q^2 }$ for which there is no index $k$ with $q=a_k.$

1976 IMO Longlists, 3

Let $a_0, a_1, \ldots, a_n, a_{n+1}$ be a sequence of real numbers satisfying the following conditions: \[a_0 = a_{n+1 }= 0,\]\[ |a_{k-1} - 2a_k + a_{k+1}| \leq 1 \quad (k = 1, 2,\ldots , n).\] Prove that $|a_k| \leq \frac{k(n+1-k)}{2} \quad (k = 0, 1,\ldots ,n + 1).$

2001 Moldova National Olympiad, Problem 6

Set $a_n=\frac{2n}{n^4+3n^2+4},n\in\mathbb N$. Prove that $\frac14\le a_1+a_2+\ldots+a_n\le\frac12$ for all $n$.

2010 China Northern MO, 1

It is known that the sequence $\{a_n\}$ satisfies $a_1=2$, $a_n=2^{2n}a_{n-1}+n\cdot 2^{n^2}$, $(n \ge 2)$, find the general term of $a_n$.

1997 Czech And Slovak Olympiad IIIA, 4

Show that there exists an increasing sequence $a_1,a_2,a_3,...$ of natural numbers such that, for any integer $k \ge 2$, the sequence $k+a_n$ ($n \in N$) contains only finitely many primes.

2018 India IMO Training Camp, 2

Tags: sequence , algebra
Let $n\ge 2$ be a natural number. Let $a_1\le a_2\le a_3\le \cdots \le a_n$ be real numbers such that $a_1+a_2+\cdots +a_n>0$ and $n(a_1^2+a_2^2+\cdots +a_n^2)=2(a_1+a_2+\cdots +a_n)^2.$ If $m=\lfloor n/2\rfloor+1$, the smallest integer larger than $n/2$, then show that $a_m>0.$

1959 Putnam, B2

Tags: sequence , series
Let $c$ be a positive real number. Prove that $c$ can be expressed in infinitely many ways as a sum of infinitely many distinct terms selected from the sequence $\left( \frac{1}{10n} \right)_{n\in \mathbb{N}}$

1999 IMO Shortlist, 3

Prove that there exists two strictly increasing sequences $(a_{n})$ and $(b_{n})$ such that $a_{n}(a_{n}+1)$ divides $b^{2}_{n}+1$ for every natural n.

2021 Regional Olympiad of Mexico Center Zone, 6

The sequence $a_1,a_2,\dots$ of positive integers obeys the following two conditions: [list] [*] For all positive integers $m,n$, it happens that $a_m\cdot a_n=a_{mn}$ [*] There exist infinite positive integers $n$ such that $(a_1,a_2,\dots,a_n)$ is a permutation of $(1,2,\dots,n)$ [/list] Prove that $a_n=n$ for all positive integers $n$. [i]Proposed by José Alejandro Reyes González[/i]

2014 Contests, 2

The first term of a sequence is $2014$. Each succeeding term is the sum of the cubes of the digits of the previous term. What is the $2014$ th term of the sequence?

2023 Brazil Undergrad MO, 6

Determine all pairs $(c, d) \in \mathbb{R}^2$ of real constants such that there is a sequence $(a_n)_{n\geq1}$ of positive real numbers such that, for all $n \geq 1$, $$a_n \geq c \cdot a_{n+1} + d \cdot \sum_{1 \leq j < n} a_j .$$

2003 VJIMC, Problem 3

Let $\{a_n\}^\infty_{n=0}$ be the sequence of real numbers satisfying $a_0=0$, $a_1=1$ and $$a_{n+2}=a_{n+1}+\frac{a_n}{2^n}$$for every $n\ge0$. Prove that $$\lim_{n\to\infty}a_n=1+\sum_{n=1}^\infty\frac1{2^{\frac{n(n-1)}2}\displaystyle\prod_{k=1}^n(2^k-1)}.$$

1988 Dutch Mathematical Olympiad, 2

Given is a number $a$ with 0 $\le \alpha \le \pi$. A sequence $c_0,c_1, c_2,...$ is defined as $$c_0=\cos \alpha$$ $$C_{n+1}=\sqrt{\frac{1+c_n}{2}} \,\, for \,\,\, n=0,1,2,...$$ Calculate $\lim_{n\to \infty}2^{2n+1}(1-c_n)$

2016 EGMO TST Turkey, 5

A sequence $a_1, a_2, \ldots $ consisting of $1$'s and $0$'s satisfies for all $k>2016$ that \[ a_k=0 \quad \Longleftrightarrow \quad a_{k-1}+a_{k-2}+\cdots+a_{k-2016}>23. \] Prove that there exist positive integers $N$ and $T$ such that $a_k=a_{k+T}$ for all $k>N$.

2021 Indonesia MO, 3

A natural number is called a [i]prime power[/i] if that number can be expressed as $p^n$ for some prime $p$ and natural number $n$. Determine the largest possible $n$ such that there exists a sequence of prime powers $a_1, a_2, \dots, a_n$ such that $a_i = a_{i - 1} + a_{i - 2}$ for all $3 \le i \le n$.

2009 IMO Shortlist, 3

Let $n$ be a positive integer. Given a sequence $\varepsilon_1$, $\dots$, $\varepsilon_{n - 1}$ with $\varepsilon_i = 0$ or $\varepsilon_i = 1$ for each $i = 1$, $\dots$, $n - 1$, the sequences $a_0$, $\dots$, $a_n$ and $b_0$, $\dots$, $b_n$ are constructed by the following rules: \[a_0 = b_0 = 1, \quad a_1 = b_1 = 7,\] \[\begin{array}{lll} a_{i+1} = \begin{cases} 2a_{i-1} + 3a_i, \\ 3a_{i-1} + a_i, \end{cases} & \begin{array}{l} \text{if } \varepsilon_i = 0, \\ \text{if } \varepsilon_i = 1, \end{array} & \text{for each } i = 1, \dots, n - 1, \\[15pt] b_{i+1}= \begin{cases} 2b_{i-1} + 3b_i, \\ 3b_{i-1} + b_i, \end{cases} & \begin{array}{l} \text{if } \varepsilon_{n-i} = 0, \\ \text{if } \varepsilon_{n-i} = 1, \end{array} & \text{for each } i = 1, \dots, n - 1. \end{array}\] Prove that $a_n = b_n$. [i]Proposed by Ilya Bogdanov, Russia[/i]

Mathley 2014-15, 5

Given the sequence $(u_n)_{n=1}^{\infty}$, where $u_1 = 1, u_2 = 2$, and $u_{n + 2} = u_{n + 1} +u_ n+ \frac{(-1)^n-1}{2}$ for any positive integers $n$. Prove that every positive integers can be expressed as the sum of some distinguished numbers of the sequence of numbers $(u_n)_{n=1}^{\infty}$ Nguyen Duy Thai Son, The University of Danang, Da Nang.

2020 China Northern MO, P1

The function $f(x)=x^2+ \sin x$ and the sequence of positive numbers $\{ a_n \}$ satisfy $a_1=1$, $f(a_n)=a_{n-1}$, where $n \geq 2$. Prove that there exists a positive integer $n$ such that $a_1+a_2+ \dots + a_n > 2020$.

1999 Austrian-Polish Competition, 5

A sequence of integers $(a_n)$ satisfies $a_{n+1} = a_n^3 + 1999$ for $n = 1,2,....$ Prove that there exists at most one $n$ for which $a_n$ is a perfect square.

1978 IMO, 3

Let $0<f(1)<f(2)<f(3)<\ldots$ a sequence with all its terms positive$.$ The $n-th$ positive integer which doesn't belong to the sequence is $f(f(n))+1.$ Find $f(240).$