This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

2015 Sharygin Geometry Olympiad, P17

Let $O$ be the circumcenter of a triangle $ABC$. The projections of points $D$ and $X$ to the sidelines of the triangle lie on lines $\ell $ and $L $ such that $\ell // XO$. Prove that the angles formed by $L$ and by the diagonals of quadrilateral $ABCD$ are equal.

2018 Turkey Team Selection Test, 9

For a triangle $T$ and a line $d$, if the feet of perpendicular lines from a point in the plane to the edges of $T$ all lie on $d$, say $d$ focuses $T$. If the set of lines focusing $T_1$ and the set of lines focusing $T_2$ are the same, say $T_1$ and $T_2$ are equivalent. Prove that, for any triangle in the plane, there exists exactly one equilateral triangle which is equivalent to it.

2022 China Team Selection Test, 2

Given a non-right triangle $ABC$ with $BC>AC>AB$. Two points $P_1 \neq P_2$ on the plane satisfy that, for $i=1,2$, if $AP_i, BP_i$ and $CP_i$ intersect the circumcircle of the triangle $ABC$ at $D_i, E_i$, and $F_i$, respectively, then $D_iE_i \perp D_iF_i$ and $D_iE_i = D_iF_i \neq 0$. Let the line $P_1P_2$ intersects the circumcircle of $ABC$ at $Q_1$ and $Q_2$. The Simson lines of $Q_1$, $Q_2$ with respect to $ABC$ intersect at $W$. Prove that $W$ lies on the nine-point circle of $ABC$.

KoMaL A Problems 2022/2023, A. 853

Let points $A, B, C, A', B', C'$ be chosen in the plane such that no three of them are collinear, and let lines $AA'$, $BB'$ and $CC'$ be tangent to a given equilateral hyperbola at points $A$, $B$ and $C$, respectively. Assume that the circumcircle of $A'B'C'$ is the same as the nine-point circle of triangle $ABC$. Let $s(A')$ be the Simson line of point $A'$ with respect to the orthic triangle of $ABC$. Let $A^*$ be the intersection of line $B'C'$ and the perpendicular on $s(A')$ from the point $A$. Points $B^*$ and $C^*$ are defined in a similar manner. Prove that points $A^*$, $B^*$ and $C^*$ are collinear. [i]Submitted by Áron Bán-Szabó, Budapest[/i]

2013 Junior Balkan Team Selection Tests - Romania, 4

Let $H$ be the orthocenter of an acute-angled triangle $ABC$ and $P$ a point on the circumcenter of triangle $ABC$. Prove that the Simson line of $P$ bisects the segment $[P H]$.

2018 Korea Winter Program Practice Test, 3

Denote $A_{DE}$ by the foot of perpendicular line from $A$ to line $DE$. Given concyclic points $A,B,C,D,E,F$, show that the three points determined by the lines $A_{FD}A_{DE}$ , $B_{DE}B_{EF}$ , $C_{EF}C_{FD}$, and the three points determined by the lines $D_{CA}D_{AB}$ , $E_{AB}E_{BC}$ , $F_{BC}F_{CA}$ are concyclic.

2022 Brazil Team Selection Test, 2

Let $ABC$ be a triangle with orthocenter $H$, $\Gamma$ its circumcircle, and $A' \neq A$, $B' \neq B$, $C' \neq C$ points on $\Gamma$. Define $l_a$ as the line that passes through the projections of $A'$ over $AB$ and $AC$. Define $l_b$ and $l_c$ similarly. Let $O$ be the circumcenter of the triangle determined by $l_a$, $l_b$ and $l_c$ and $H'$ the orthocenter of $A'B'C'$. Show that $O$ is midpoint of $HH'$.