This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 73

2024 AMC 10, 15

Let $M$ be the greatest integer such that both $M + 1213$ and $M + 3773$ are perfect squares. What is the units digit of $M$? $ \textbf{(A) }1 \qquad \textbf{(B) }2 \qquad \textbf{(C) }3 \qquad \textbf{(D) }6 \qquad \textbf{(E) }8 \qquad $

1985 AMC 12/AHSME, 19

Consider the graphs $ y \equal{} Ax^2$ and and $ y^2 \plus{} 3 \equal{} x^2 \plus{} 4y$, where $ A$ is a positive constant and $ x$ and $ y$ are real variables. In how many points do the two graphs intersect? $ \textbf{(A)}\ \text{exactly } 4 \qquad \textbf{(B)}\ \text{exactly } 2$ $ \textbf{(C)}\ \text{at least } 1, \text{ but the number varies for different positive values of } A$ $ \textbf{(D)}\ 0 \text{ for at least one positive value of } A \qquad \textbf{(E)}\ \text{none of these}$

2020 MBMT, 18

Let $w, x, y, z$ be integers from $0$ to $3$ inclusive. Find the number of ordered quadruples of $(w, x, y, z)$ such that $5x^2 + 5y^2 + 5z^2 - 6wx-6wy -6wz$ is divisible by $4$. [i]Proposed by Timothy Qian[/i]

2001 Slovenia National Olympiad, Problem 1

None of the positive integers $k,m,n$ are divisible by $5$. Prove that at least one of the numbers $k^2-m^2,m^2-n^2,n^2-k^2$ is divisible by $5$.

1989 Putnam, A1

How many base ten integers of the form 1010101...101 are prime?

2015 AMC 12/AHSME, 10

Integers $x$ and $y$ with $x>y>0$ satisfy $x+y+xy=80$. What is $x$? $\textbf{(A) }8\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad\textbf{(E) }26$

2012 Pan African, 1

The numbers $\frac{1}{1}, \frac{1}{2}, \cdots , \frac{1}{2012}$ are written on the blackboard. Aïcha chooses any two numbers from the blackboard, say $x$ and $y$, erases them and she writes instead the number $x + y + xy$. She continues to do this until only one number is left on the board. What are the possible values of the final number?

2012 Today's Calculation Of Integral, 843

Let $f(x)$ be a continuous function such that $\int_0^1 f(x)\ dx=1.$ Find $f(x)$ for which $\int_0^1 (x^2+x+1)f(x)^2dx$ is minimized.

2002 AMC 12/AHSME, 12

Both roots of the quadratic equation $ x^2 \minus{} 63x \plus{} k \equal{} 0$ are prime numbers. The number of possible values of $ k$ is $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \textbf{more than four}$

1983 AMC 12/AHSME, 21

Find the smallest positive number from the numbers below $\text{(A)} \ 10-3\sqrt{11} \qquad \text{(B)} \ 3\sqrt{11}-10 \qquad \text{(C)} \ 18-5\sqrt{13} \qquad \text{(D)} \ 51-10\sqrt{26} \qquad \text{(E)} \ 10\sqrt{26}-51$

1993 AMC 12/AHSME, 19

How many ordered pairs $(m,n)$ of positive integers are solutions to $\frac{4}{m}+\frac{2}{n}=1$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \text{more than}\ 4 $

2013 AMC 10, 11

Real numbers $x$ and $y$ satisfy the equation $x^2+y^2=10x-6y-34$. What is $x+y$? $ \textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8 $

MBMT Team Rounds, 2020.18

Let $w, x, y, z$ be integers from $0$ to $3$ inclusive. Find the number of ordered quadruples of $(w, x, y, z)$ such that $5x^2 + 5y^2 + 5z^2 - 6wx-6wy -6wz$ is divisible by $4$. [i]Proposed by Timothy Qian[/i]

2020 AMC 12/AHSME, 2

What is the value of the following expression? $$\frac{100^2-7^2}{70^2-11^2} \cdot \frac{(70-11)(70+11)}{(100-7)(100+7)}$$ $\textbf{(A) } 1 \qquad \textbf{(B) } \frac{9951}{9950} \qquad \textbf{(C) } \frac{4780}{4779} \qquad \textbf{(D) } \frac{108}{107} \qquad \textbf{(E) } \frac{81}{80} $

2023 AMC 10, 9

The numbers $16$ and $25$ are a pair of consecutive perfect squares whose difference is $9$. How many pairs of consecutive positive perfect squares have a difference of less than or equal to $2023$? $\textbf{(A) } 674 \qquad \textbf{(B) } 1011 \qquad \textbf{(C) } 1010 \qquad \textbf{(D) } 2019 \qquad \textbf{(E) } 2017$

2004 Iran Team Selection Test, 1

Suppose that $ p$ is a prime number. Prove that for each $ k$, there exists an $ n$ such that: \[ \left(\begin{array}{c}n\\ \hline p\end{array}\right)\equal{}\left(\begin{array}{c}n\plus{}k\\ \hline p\end{array}\right)\]

1977 AMC 12/AHSME, 21

For how many values of the coefficient $a$ do the equations \begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*} have a common real solution? $\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$

2004 AMC 12/AHSME, 13

If $ f(x) \equal{} ax \plus{} b$ and $ f^{ \minus{} 1}(x) \equal{} bx \plus{} a$ with $ a$ and $ b$ real, what is the value of $ a \plus{} b$? $ \textbf{(A)} \minus{} \!2 \qquad \textbf{(B)} \minus{} \!1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 2$

1964 AMC 12/AHSME, 37

Given two positive number $a$, $b$ such that $a<b$. Let A.M. be their arithmetic mean and let G.M. be their positive geometric mean. Then A.M. minus G.M. is always less than: $\textbf{(A) }\dfrac{(b+a)^2}{ab}\qquad\textbf{(B) }\dfrac{(b+a)^2}{8b}\qquad\textbf{(C) }\dfrac{(b-a)^2}{ab}$ $\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}$

1997 India National Olympiad, 2

Show that there do not exist positive integers $m$ and $n$ such that \[ \dfrac{m}{n} + \dfrac{n+1}{m} = 4 . \]

2014 HMNT, 2

Let $f(x) = x^2 + 6x + 7$. Determine the smallest possible value of $f(f(f(f(x))))$ over all real numbers $x.$

2007 AMC 10, 23

How many ordered pairs $ (m,n)$ of positive integers, with $ m > n$, have the property that their squares differ by $ 96$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 12$

2005 AIME Problems, 4

The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.

1987 AIME Problems, 5

Find $3x^2 y^2$ if $x$ and $y$ are integers such that $y^2 + 3x^2 y^2 = 30x^2 + 517$.