This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 73

1977 AMC 12/AHSME, 21

For how many values of the coefficient $a$ do the equations \begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*} have a common real solution? $\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$

2004 Iran Team Selection Test, 1

Suppose that $ p$ is a prime number. Prove that for each $ k$, there exists an $ n$ such that: \[ \left(\begin{array}{c}n\\ \hline p\end{array}\right)\equal{}\left(\begin{array}{c}n\plus{}k\\ \hline p\end{array}\right)\]

2008 AIME Problems, 1

Let $ N\equal{}100^2\plus{}99^2\minus{}98^2\minus{}97^2\plus{}96^2\plus{}\cdots\plus{}4^2\plus{}3^2\minus{}2^2\minus{}1^2$, where the additions and subtractions alternate in pairs. Find the remainder when $ N$ is divided by $ 1000$.

1995 All-Russian Olympiad, 5

Prove that for every natural number $a_1>1$ there exists an increasing sequence of natural numbers $a_n$ such that $a^2_1+a^2_2+\cdots+a^2_k$ is divisible by $a_1+a_2+\cdots+a_k$ for all $k \geq 1$. [i]A. Golovanov[/i]

2007 AMC 10, 23

How many ordered pairs $ (m,n)$ of positive integers, with $ m > n$, have the property that their squares differ by $ 96$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 12$

2011 USAMTS Problems, 2

Find all integers $a$, $b$, $c$, $d$, and $e$ such that \begin{align*}a^2&=a+b-2c+2d+e-8,\\b^2&=-a-2b-c+2d+2e-6,\\c^2&=3a+2b+c+2d+2e-31,\\d^2&=2a+b+c+2d+2e-2,\\e^2&=a+2b+3c+2d+e-8.\end{align*}

1981 AMC 12/AHSME, 14

In a geometric sequence of real numbers, the sum of the first two terms is 7, and the sum of the first 6 terms is 91. The sum of the first 4 terms is $\text{(A)}\ 28 \qquad \text{(B)}\ 32 \qquad \text{(C)}\ 35 \qquad \text{(D)}\ 49 \qquad \text{(E)}\ 84$

2004 Iran Team Selection Test, 1

Suppose that $ p$ is a prime number. Prove that for each $ k$, there exists an $ n$ such that: \[ \left(\begin{array}{c}n\\ \hline p\end{array}\right)\equal{}\left(\begin{array}{c}n\plus{}k\\ \hline p\end{array}\right)\]

2009 Princeton University Math Competition, 1

Find the number of pairs of integers $x$ and $y$ such that $x^2 + xy + y^2 = 28$.

2023 AMC 10, 9

The numbers $16$ and $25$ are a pair of consecutive perfect squares whose difference is $9$. How many pairs of consecutive positive perfect squares have a difference of less than or equal to $2023$? $\textbf{(A) } 674 \qquad \textbf{(B) } 1011 \qquad \textbf{(C) } 1010 \qquad \textbf{(D) } 2019 \qquad \textbf{(E) } 2017$

2010 AIME Problems, 5

Positive numbers $ x$, $ y$, and $ z$ satisfy $ xyz \equal{} 10^{81}$ and $ (\log_{10}x)(\log_{10} yz) \plus{} (\log_{10}y) (\log_{10}z) \equal{} 468$. Find $ \sqrt {(\log_{10}x)^2 \plus{} (\log_{10}y)^2 \plus{} (\log_{10}z)^2}$.

2020 MBMT, 18

Let $w, x, y, z$ be integers from $0$ to $3$ inclusive. Find the number of ordered quadruples of $(w, x, y, z)$ such that $5x^2 + 5y^2 + 5z^2 - 6wx-6wy -6wz$ is divisible by $4$. [i]Proposed by Timothy Qian[/i]

2004 Harvard-MIT Mathematics Tournament, 10

There exists a polynomial $P$ of degree $5$ with the following property: if $z$ is a complex number such that $z^5+2004z=1$, then $P(z^2)=0$. Calculate the quotient $\tfrac{P(1)}{P(-1)}$.

2009 Indonesia MO, 1

In a drawer, there are at most $ 2009$ balls, some of them are white, the rest are blue, which are randomly distributed. If two balls were taken at the same time, then the probability that the balls are both blue or both white is $ \frac12$. Determine the maximum amount of white balls in the drawer, such that the probability statement is true?

1971 AMC 12/AHSME, 14

The number $(2^{48}-1)$ is exactly divisible by two numbers between $60$ and $70$. These numbers are $\textbf{(A) }61,63\qquad\textbf{(B) }61,65\qquad\textbf{(C) }63,65\qquad\textbf{(D) }63,67\qquad \textbf{(E) }67,69$

2017 Canadian Mathematical Olympiad Qualification, 3

Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following equation for all $x, y \in \mathbb{R}$. $$(x+y)f(x-y) = f(x^2-y^2).$$

1996 Hungary-Israel Binational, 2

$ n>2$ is an integer such that $ n^2$ can be represented as a difference of cubes of 2 consecutive positive integers. Prove that $ n$ is a sum of 2 squares of positive integers, and that such $ n$ does exist.

2007 Harvard-MIT Mathematics Tournament, 3

The equation $x^2+2x=i$ has two complex solutions. Determine the product of their real parts.

2019 India PRMO, 3

Find the number of positive integers less than 101 that [i]can not [/i] be written as the difference of two squares of integers.

2008 Puerto Rico Team Selection Test, 4

If the sides of a triangle have lengths $ a, b, c$, such that $ a \plus{} b \minus{} c \equal{} 2$, and $ 2ab \minus{} c^{2} \equal{} 4$, prove that the triangle is equilateral.

2005 AIME Problems, 4

The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.

2020 AMC 12/AHSME, 2

What is the value of the following expression? $$\frac{100^2-7^2}{70^2-11^2} \cdot \frac{(70-11)(70+11)}{(100-7)(100+7)}$$ $\textbf{(A) } 1 \qquad \textbf{(B) } \frac{9951}{9950} \qquad \textbf{(C) } \frac{4780}{4779} \qquad \textbf{(D) } \frac{108}{107} \qquad \textbf{(E) } \frac{81}{80} $

1981 AMC 12/AHSME, 21

In a triangle with sides of lengths $a,b,$ and $c,$ $(a+b+c)(a+b-c) = 3ab.$ The measure of the angle opposite the side length $c$ is $\displaystyle \text{(A)} \ 15^\circ \qquad \text{(B)} \ 30^\circ \qquad \text{(C)} \ 45^\circ \qquad \text{(D)} \ 60^\circ \qquad \text{(E)} \ 150^\circ$

2011 Math Prize For Girls Problems, 13

The number 104,060,465 is divisible by a five-digit prime number. What is that prime number?