This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

2022 BMT, Tie 1

Let $ABCDEF GH$ be a unit cube such that $ABCD$ is one face of the cube and $\overline{AE}$, $\overline{BF}$, $\overline{CG}$, and $\overline{DH}$ are all edges of the cube. Points $I, J, K$, and $L$ are the respective midpoints of $\overline{AF}$, $\overline{BG}$, $\overline{CH}$, and $\overline{DE}$. The inscribed circle of $IJKL$ is the largest cross-section of some sphere. Compute the volume of this sphere.

2008 Princeton University Math Competition, B4

Tags: cube , sphere
A cube is divided into $27$ unit cubes. A sphere is inscribed in each of the corner unit cubes, and another sphere is placed tangent to these $8$ spheres. What is the smallest possible value for the radius of the last sphere?

2008 Putnam, B3

What is the largest possible radius of a circle contained in a 4-dimensional hypercube of side length 1?

VI Soros Olympiad 1999 - 2000 (Russia), 11.3

Three spheres $s_1$, $s_2$, $s_3$ intersect along one circle $\omega$. Let $A $be an arbitrary point lying on the circle $\omega$. Ray $AB$ intersects spheres $s_1$, $s_2$, $s_3$ at points $B_1$, $B_2$, $B_3$, respectively, ray $AC$ intersects spheres $s_1$, $s_2$, $s_3$ at points $C_1$, $C_2$, $C_3$, respectively ($B_i \ne A_i$, $C_i \ne A_i$, $i=1,2,3$). It is known that $B_2$ is the midpoint of the segment $B_1B_3$. Prove that $C_2$ is the midpoint of the segment $C_1C_3$.

2010 AMC 10, 12

Logan is constructing a scaled model of his town. The city's water tower stands $ 40$ meters high, and the top portion is a sphere that holds $ 100,000$ liters of water. Logan's miniature water tower holds $ 0.1$ liters. How tall, in meters, should Logan make his tower? $ \textbf{(A)}\ 0.04\qquad \textbf{(B)}\ \frac{0.4}{\pi}\qquad \textbf{(C)}\ 0.4\qquad \textbf{(D)}\ \frac{4}{\pi}\qquad \textbf{(E)}\ 4$

2013 Princeton University Math Competition, 8

Three chords of a sphere, each having length $5,6,7$, intersect at a single point inside the sphere and are pairwise perpendicular. For $R$ the maximum possible radius of this sphere, find $R^2$.

2006 Iran MO (3rd Round), 1

A regular polyhedron is a polyhedron that is convex and all of its faces are regular polygons. We call a regular polhedron a "[i]Choombam[/i]" iff none of its faces are triangles. a) prove that each choombam can be inscribed in a sphere. b) Prove that faces of each choombam are polygons of at most 3 kinds. (i.e. there is a set $\{m,n,q\}$ that each face of a choombam is $n$-gon or $m$-gon or $q$-gon.) c) Prove that there is only one choombam that its faces are pentagon and hexagon. (Soccer ball) [img]http://aycu08.webshots.com/image/5367/2001362702285797426_rs.jpg[/img] d) For $n>3$, a prism that its faces are 2 regular $n$-gons and $n$ squares, is a choombam. Prove that except these choombams there are finitely many choombams.

1962 IMO Shortlist, 7

The tetrahedron $SABC$ has the following property: there exist five spheres, each tangent to the edges $SA, SB, SC, BC, CA, AB,$ or to their extensions. a) Prove that the tetrahedron $SABC$ is regular. b) Prove conversely that for every regular tetrahedron five such spheres exist.

1974 Chisinau City MO, 78

Each point of the sphere of radius $r\ge 1$ is colored in one of $n$ colors ($n \ge 2$), and for each color there is a point on the sphere colored in this color. Prove that there are points $A_i$, $B_i$, $i= 1, ..., n$ on the sphere such that the colors of the points $A_1, ..., A_n$ are pairwise different and the color of the point $B_i$ at a distance of $1$ from $A_i$ is different from the color of the point $A_1, i= 1, ..., n$

1985 Polish MO Finals, 6

There is a convex polyhedron with $k$ faces. Show that if more than $k/2$ of the faces are such that no two have a common edge, then the polyhedron cannot have an inscribed sphere.

1992 USAMO, 4

Chords $AA^{\prime}$, $BB^{\prime}$, $CC^{\prime}$ of a sphere meet at an interior point $P$ but are not contained in a plane. The sphere through $A$, $B$, $C$, $P$ is tangent to the sphere through $A^{\prime}$, $B^{\prime}$, $C^{\prime}$, $P$. Prove that $\, AA' = BB' = CC'$.

2000 French Mathematical Olympiad, Exercise 2

Let $A,B,C$ be three distinct points in space, $(A)$ the sphere with center $A$ and radius $r$. Let $E$ be the set of numbers $R>0$ for which there is a sphere $(H)$ with center $H$ and radius $R$ such that $B$ and $C$ are outside the sphere, and the points of the sphere $(A)$ are strictly inside it. (a) Suppose that $B$ and $C$ are on a line with $A$ and strictly outside $(A)$. Show that $E$ is nonempty and bounded, and determine its supremum in terms of the given data. (b) Find a necessary and sufficient condition for $E$ to be nonempty and bounded (c) Given $r$, compute the smallest possible supremum of $E$, if it exists.

1989 Tournament Of Towns, (237) 1

Is it possible to choose a sphere, a triangular pyramid and a plane so that every plane, parallel to the chosen one, intersects the sphere and the pyramid in sections of equal area? (Problem from Latvia)

2016 BMT Spring, 16

What is the radius of the largest sphere that fits inside the tetrahedron whose vertices are the points $(0, 0, 0)$, $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$?

2014 Contests, 3

A real number $f(X)\neq 0$ is assigned to each point $X$ in the space. It is known that for any tetrahedron $ABCD$ with $O$ the center of the inscribed sphere, we have : \[ f(O)=f(A)f(B)f(C)f(D). \] Prove that $f(X)=1$ for all points $X$. [i]Proposed by Aleksandar Ivanov[/i]

1978 Swedish Mathematical Competition, 3

Two satellites are orbiting the earth in the equatorial plane at an altitude $h$ above the surface. The distance between the satellites is always $d$, the diameter of the earth. For which $h$ is there always a point on the equator at which the two satellites subtend an angle of $90^\circ$?

1999 USAMTS Problems, 5

We say that a finite set of points is [i]well scattered[/i] on the surface of a sphere if every open hemisphere (half the surface of the sphere without its boundary) contains at least one of the points. The set $\{ (1,0,0), (0,1,0), (0,0,1) \}$ is not well scattered on the unit sphere (the sphere of radius $1$ centered at the origin), but if you add the correct point $P$ it becomes well scattered. Find, with proof, all possible points $P$ that would make the set well scattered.

1994 All-Russian Olympiad, 7

The altitudes $AA_1,BB_1,CC_1,DD_1$ of a tetrahedron $ABCD$ intersect in the center $H$ of the sphere inscribed in the tetrahedron $A_1B_1C_1D_1$. Prove that the tetrahedron $ABCD$ is regular. (D. Tereshin)

1973 Czech and Slovak Olympiad III A, 2

Given a tetrahedron $A_1A_2A_3A_4$, define an $A_1$-exsphere such a sphere that is tangent to all planes given by faces of the tetrahedron and the vertex $A_1$ and the sphere are separated by the plane $A_2A_3A_4.$ Denote $\varrho_1,\ldots,\varrho_4$ of all four exspheres. Furthermore, denote $v_i, i=1,\ldots,4$ the distance of the vertex $A_i$ from the opposite face. Show that \[2\left(\frac{1}{v_1}+\frac{1}{v_2}+\frac{1}{v_3}+\frac{1}{v_4}\right)=\frac{1}{\varrho_1}+\frac{1}{\varrho_2}+\frac{1}{\varrho_3}+\frac{1}{\varrho_4}.\]

1995 Dutch Mathematical Olympiad, 4

A number of spheres with radius $ 1$ are being placed in the form of a square pyramid. First, there is a layer in the form of a square with $ n^2$ spheres. On top of that layer comes the next layer with $ (n\minus{}1)^2$ spheres, and so on. The top layer consists of only one sphere. Compute the height of the pyramid.

1979 Romania Team Selection Tests, 4.

Let $A_1A_2A_3A_4$ be a tetrahedron. Consider the sphere centered at $A_1$ which is tangent to the face $A_2A_3A_4$ of the tetrahedron. Show that the surface area of the part of the sphere which is inside the tetrahedron is less than the area of the triangle $A_2A_3A_4$. [i]Sorin Rădulescu[/i]

2006 German National Olympiad, 2

Five points are on the surface of of a sphere of radius $1$. Let $a_{\text{min}}$ denote the smallest distance (measured along a straight line in space) between any two of these points. What is the maximum value for $a_{\text{min}}$, taken over all arrangements of the five points?

2005 Sharygin Geometry Olympiad, 20

Let $I$ be the center of the sphere inscribed in the tetrahedron $ABCD, A ', B', C ', D'$ be the centers of the spheres circumscribed around the tetrahedra $IBCD, ICDA, IDAB, IABC$, respectively. Prove that the sphere circumscribed around $ABCD$ lies entirely inside the circumscribed around $A'B'C'D '$.

1990 AIME Problems, 14

The rectangle $ABCD$ below has dimensions $AB = 12 \sqrt{3}$ and $BC = 13 \sqrt{3}$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P$. If triangle $ABP$ is cut out and removed, edges $\overline{AP}$ and $\overline{BP}$ are joined, and the figure is then creased along segments $\overline{CP}$ and $\overline{DP}$, we obtain a triangular pyramid, all four of whose faces are isosceles triangles. Find the volume of this pyramid. [asy] pair D=origin, A=(13,0), B=(13,12), C=(0,12), P=(6.5, 6); draw(B--C--P--D--C^^D--A); filldraw(A--P--B--cycle, gray, black); label("$A$", A, SE); label("$B$", B, NE); label("$C$", C, NW); label("$D$", D, SW); label("$P$", P, N); label("$13\sqrt{3}$", A--D, S); label("$12\sqrt{3}$", A--B, E);[/asy]

2015 Sharygin Geometry Olympiad, 7

Let $SABCD$ be an inscribed pyramid, and $AA_1$, $BB_1$, $CC_1$, $DD_1$ be the perpendiculars from $A$, $B$, $C$, $D$ to lines $SC$, $SD$, $SA$, $SB$ respectively. Points $S$, $A_1$, $B_1$, $C_1$, $D_1$ are distinct and lie on a sphere. Prove that points $A_1$, $B_1$, $C_1$ and $D_1$ are coplanar.