This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 594

1949-56 Chisinau City MO, 36

Tags: algebra , sum
Calculate the sum: $1+ 2q + 3q^2 +...+nq^{n-1}$

1996 Mexico National Olympiad, 4

For which integers $n\ge 2$ can the numbers $1$ to $16$ be written each in one square of a squared $4\times 4$ paper such that the $8$ sums of the numbers in rows and columns are all different and divisible by $n$?

1991 All Soviet Union Mathematical Olympiad, 545

The numbers $1, 2, 3, ... , n$ are written on a blackboard (where $n \ge 3$). A move is to replace two numbers by their sum and non-negative difference. A series of moves makes all the numbers equal $k$. Find all possible $k$

2004 BAMO, 4

Suppose one is given $n$ real numbers, not all zero, but such that their sum is zero. Prove that one can label these numbers $a_1, a_2, ..., a_n$ in such a manner that $a_1a_2 + a_2a_3 +...+a_{n-1}a_n + a_na_1 < 0$.

1995 Tuymaada Olympiad, 4

It is known that the merchant’s $n$ clients live in locations laid along the ring road. Of these, $k$ customers have debts to the merchant for $a_1,a_2,...,a_k$ rubles, and the merchant owes the remaining $n-k$ clients, whose debts are $b_1,b_2,...,b_{n-k}$ rubles, moreover, $a_1+a_2+...+a_k=b_1+b_2+...+b_{n-k}$. Prove that a merchant who has no money can pay all his debts and have paid all the customer debts, by starting a customer walk along the road from one of points and not missing any of their customers.

2019 Tournament Of Towns, 4

Each segment whose endpoints are the vertices of a given regular $100$-gon is colored red, if the number of vertices between its endpoints is even, and blue otherwise. (For example, all sides of the $100$-gon are red.) A number is placed in every vertex so that the sum of their squares is equal to $1$. On each segment the product of the numbers at its endpoints is written. The sum of the numbers on the blue segments is subtracted from the sum of the numbers on the red segments. What is the greatest possible result? (Ilya Bogdanov)

2015 Kyiv Math Festival, P3

Is it true that every positive integer greater than $50$ is a sum of $4$ positive integers such that each two of them have a common divisor greater than $1$?

2013 Costa Rica - Final Round, 2

Determine all even positive integers that can be written as the sum of odd composite positive integers.

1999 Poland - Second Round, 6

Suppose that $a_1,a_2,...,a_n$ are integers such that $a_1 +2^ia_2 +3^ia_3 +...+n^ia_n = 0$ for $i = 1,2,...,k -1$, where $k \ge 2$ is a given integer. Prove that $a_1+2^ka_2+3^ka_3+...+n^ka_n$ is divisible by $k!$.

1987 Swedish Mathematical Competition, 1

Tags: algebra , sum
Sixteen real numbers are arranged in a magic square of side $4$ so that the sum of numbers in each row, column or main diagonal equals $k$. Prove that the sum of the numbers in the four corners of the square is also $k$.

2008 Indonesia TST, 2

Let $\{a_n\}_{n \in N}$ be a sequence of real numbers with $a_1 = 2$ and $a_n =\frac{n^2 + 1}{\sqrt{n^3 - 2n^2 + n}}$ for all positive integers $n \ge 2$. Let $s_n = a_1 + a_2 + ...+ a_n$ for all positive integers $n$. Prove that $$\frac{1}{s_1s_2}+\frac{1}{s_2s_3}+ ...+\frac{1}{s_ns_{n+1}}<\frac15$$ for all positive integers $n$.

2014 Czech-Polish-Slovak Junior Match, 5

A square is given. Lines divide it into $n$ polygons. What is he the largest possible sum of the internal angles of all polygons?

1993 Czech And Slovak Olympiad IIIA, 4

The sequence ($a_n$) of natural numbers is defined by $a_1 = 2$ and $a_{n+1}$ equals the sum of tenth powers of the decimal digits of $a_n$ for all $n \ge 1$. Are there numbers which appear twice in the sequence ($a_n$)?

1999 Tournament Of Towns, 3

(a) The numbers $1, 2,... , 100$ are divided into two groups so that the sum of all numbers in one group is equal to that in the other. Prove that one can remove two numbers from each group so that the sums of all numbers in each group are still the same. (b) The numbers $1, 2 , ... , n$ are divided into two groups so that the sum of all numbers in one group is equal to that in the other . Is it true that for every such$ n > 4$ one can remove two numbers from each group so that the sums of all numbers in each group are still the same? (A Shapovalov) [(a) for Juniors, (a)+(b) for Seniors]

2019 Saudi Arabia JBMO TST, 1

Tags: algebra , sum
Real nonzero numbers $x, y, z$ are such that $x+y +z = 0$. Moreover, it is known that $$A =\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}+ 1$$Determine $A$.

2009 Danube Mathematical Competition, 2

Prove that all the positive integer numbers , except for the powers of $2$, can be written as the sum of (at least two) consecutive natural numbers .

2015 Romania Team Selection Tests, 5

Given an integer $N \geq 4$, determine the largest value the sum $$\sum_{i=1}^{\left \lfloor{\frac{k}{2}}\right \rfloor+1}\left( \left \lfloor{\frac{n_i}{2}}\right \rfloor+1\right)$$ may achieve, where $k, n_1, \ldots, n_k$ run through the integers subject to $k \geq 3$, $n_1 \geq \ldots\geq n_k\geq 1$ and $n_1 + \ldots + n_k = N$.

1971 Dutch Mathematical Olympiad, 4

Tags: number theory , sum
For every positive integer $n$ there exist unambiguously determined non-negative integers $a(n)$ and $b(n)$ such that $$n = 2^{a(n)}(2b(n)+1),$$ For positive integer $k$ we define $S(k)$ by: $$a(1) + a(2) + ... + a(2^k) = S(k)$$ Express $S(k)$ in terms of $k$.

2005 Slovenia Team Selection Test, 4

Find the number of sequences of $2005$ terms with the following properties: (i) No three consecutive terms of the sequence are equal, (ii) Every term equals either $1$ or $-1$, (iii) The sum of all terms of the sequence is at least $666$.

2006 Estonia National Olympiad, 1

Tags: algebra , sum
Calculate the sum $$\frac{1}{1+2^{-2006}}+...+ \frac{1}{1+2^{-1}}+ \frac{1}{1+2^{0}}+ \frac{1}{1+2^{1}}+...+ \frac{1}{1+2^{2006}}$$

1991 Romania Team Selection Test, 7

Let $x_1,x_2,...,x_{2n}$ be positive real numbers with the sum $1$. Prove that $$x_1^2x_2^2...x_n^2+x_2^2x_3^2...x_{n+1}^2+...+x_{2n}^2x_1^2...x_{n-1}^2 <\frac{1}{n^{2n}}$$

2009 Postal Coaching, 5

Let $P$ be an interior point of a circle and $A_1,A_2...,A_{10}$ be points on the circle such that $\angle A_1PA_2 = \angle A_2PA_3 = ... = \angle A_{10}PA_1 = 36^o$. Prove that $PA_1 + PA_3 + PA_5 + PA_7 +PA_9 = PA_2 + PA_4 + PA_6 + PA_8 + PA_{10}$.

1992 Romania Team Selection Test, 4

Let $x_1,x_2,...,x_n$ be real numbers with $1 \ge x_1 \ge x_2\ge ... \ge x_n \ge 0$ and $x_1^2 +x_2^2+...+x_n^2= 1$. If $[x_1 +x_2 +...+x_n] = m$, prove that $x_1 +x_2 +...+x_m \ge 1$.

1995 Poland - Second Round, 4

Positive real numbers $x_1,x_2,...,x_n$ satisfy the condition $\sum_{i=1}^n x_i \le \sum_{i=1}^n x_i ^2$ . Prove the inequality $\sum_{i=1}^n x_i^t \le \sum_{i=1}^n x_i ^{t+1}$ for all real numbers $t > 1$.

1954 Moscow Mathematical Olympiad, 286

Consider the set of all $10$-digit numbers expressible with the help of figures $1$ and $2$ only. Divide it into two subsets so that the sum of any two numbers of the same subset is a number which is written with not less than two $3$’s.