This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 124

2000 Saint Petersburg Mathematical Olympiad, 11.6

What is the greatest amount of rooks that can be placed on an $n\times n$ board, such that each rooks beats an even number of rooks? A rook is considered to beat another rook, if they lie on one vertical or one horizontal line and no rooks are between them. [I]Proposed by D. Karpov[/i]

2001 Estonia National Olympiad, 5

Tags: table , max , combinatorics
A table consisting of $9$ rows and $2001$ columns is filfed with integers $1,2,..., 2001$ in such a way that each of these integers occurs in the table exactly $9$ times and the integers in any column differ by no more than $3$. Find the maximum possible value of the minimal column sum (sum of the numbers in one column).

2015 IFYM, Sozopol, 8

A cross with length $p$ (or [i]p-cross[/i] for short) will be called the figure formed by a unit square and 4 rectangles $p-1$ x $1$ on its sides. What’s the least amount of colors one has to use to color the cells of an infinite table, so that each [i]p-cross[/i] on it covers cells, no two of which are in the same color?

2008 Tournament Of Towns, 3

Alice and Brian are playing a game on a $1\times (N + 2)$ board. To start the game, Alice places a checker on any of the $N$ interior squares. In each move, Brian chooses a positive integer $n$. Alice must move the checker to the $n$-th square on the left or the right of its current position. If the checker moves off the board, Alice wins. If it lands on either of the end squares, Brian wins. If it lands on another interior square, the game proceeds to the next move. For which values of $N$ does Brian have a strategy which allows him to win the game in a finite number of moves?

2016 Bulgaria JBMO TST, 4

Given is a table 4x4 and in every square there is 0 or 1. In a move we choose row or column and we change the numbers there. Call the square "zero" if we cannot decrease the number of zeroes in it. Call "degree of the square" the number zeroes in a "zero" square. Find all possible values of the degree.

2000 Tournament Of Towns, 1

Each $1 \times 1$ square of an $n \times n$ table contains a different number. The smallest number in each row is marked, and these marked numbers are in different columns. Then the smallest number in each column is marked, and these marked numbers are in different rows. Prove that the two sets of marked numbers are identical. (V Klepcyn)

1992 All Soviet Union Mathematical Olympiad, 572

Half the cells of a $2m \times n$ board are colored black and the other half are colored white. The cells at the opposite ends of the main diagonal are different colors. The center of each black cell is connected to the center of every other black cell by a straight line segment, and similarly for the white cells. Show that we can place an arrow on each segment so that it becomes a vector and the vectors sum to zero.

2025 Bulgarian Spring Mathematical Competition, 10.3

In the cell $(i,j)$ of a table $n\times n$ is written the number $(i-1)n + j$. Determine all positive integers $n$ such that there are exactly $2025$ rows not containing a perfect square.

2012 Tournament of Towns, 2

The cells of a $1\times 2n$ board are labelled $1,2,...,, n, -n,..., -2, -1$ from left to right. A marker is placed on an arbitrary cell. If the label of the cell is positive, the marker moves to the right a number of cells equal to the value of the label. If the label is negative, the marker moves to the left a number of cells equal to the absolute value of the label. Prove that if the marker can always visit all cells of the board, then $2n + 1$ is prime.

2015 IFYM, Sozopol, 4

A plane is cut into unit squares, which are then colored in $n$ colors. A polygon $P$ is created from $n$ unit squares that are connected by their sides. It is known that any cell polygon created by $P$ with translation, covers $n$ unit squares in different colors. Prove that the plane can be covered with copies of $P$ so that each cell is covered exactly once.

2017 Kürschák Competition, 3

An $n$ by $n$ table has an integer in each cell, such that no two cells within a row share the same number. Prove that it is possible to permute the elements within each row to obtain a table that has $n$ distinct numbers in each column.

1992 All Soviet Union Mathematical Olympiad, 565

An $m \times n$ rectangle is divided into mn unit squares by lines parallel to its sides. A gnomon is the figure of three unit squares formed by deleting one unit square from a $2 \times 2$ square. For what $m, n$ can we divide the rectangle into gnomons so that no two gnomons form a rectangle and no vertex is in four gnomons?

2022 Macedonian Mathematical Olympiad, Problem 4

Sofia and Viktor are playing the following game on a $2022 \times 2022$ board: - Firstly, Sofia covers the table completely by dominoes, no two are overlapping and all are inside the table; - Then Viktor without seeing the table, chooses a positive integer $n$; - After that Viktor looks at the table covered with dominoes, chooses and fixes $n$ of them; - Finally, Sofia removes the remaining dominoes that aren't fixed and tries to recover the table with dominoes differently from before. If she achieves that, she wins, otherwise Viktor wins. What is the minimum number $n$ for which Viktor can always win, no matter the starting covering of dominoes. [i]Proposed by Viktor Simjanoski[/i]

2024 Iran MO (3rd Round), 2

Two intelligent people playing a game on the $1403 \times 1403$ table with $1403^2$ cells. The first one in each turn chooses a cell that didn't select before and draws a vertical line segment from the top to the bottom of the cell. The second person in each turn chooses a cell that didn't select before and draws a horizontal line segment from the left to the right of the cell. After $1403^2$ steps the game will be over. The first person gets points equal to the longest verticals line segment and analogously the second person gets point equal to the longest horizonal line segment. At the end the person who gets the more point will win the game. What will be the result of the game?

2019 Tournament Of Towns, 5

One needs to ffll the cells of an $n\times n$ table ($n > 1$) with distinct integers from $1$ to $n^2$ so that every two consecutive integers are placed in cells that share a side, while every two integers with the same remainder if divided by $n$ are placed in distinct rows and distinct columns. For which $n$ is this possible? (Alexandr Gribalko)

2020 Tournament Of Towns, 4

For which integers $N$ it is possible to write real numbers into the cells of a square of size $N \times N$ so that among the sums of each pair of adjacent cells there are all integers from $1$ to $2(N-1)N$ (each integer once)? Maxim Didin

1987 All Soviet Union Mathematical Olympiad, 453

Each field of the $1987\times 1987$ board is filled with numbers, which absolute value is not greater than one. The sum of all the numbers in every $2\times 2$ square equals $0$. Prove that the sum of all the numbers is not greater than $1987$.

2019 Durer Math Competition Finals, 2

Albrecht fills in each cell of an $8 \times 8$ table with a $0$ or a $1$. Then at the end of each row and column he writes down the sum of the $8$ digits in that row or column, and then he erases the original digits in the table. Afterwards, he claims to Berthold that given only the sums, it is possible to restore the $64$ digits in the table uniquely. Show that the $8 \times 8$ table contained either a row full of $0$’s or a column full of $1$’s

2015 JBMO Shortlist, C1

A board $ n \times n$ ($n \ge 3$) is divided into $n^2$ unit squares. Integers from $O$ to $n$ included, are written down: one integer in each unit square, in such a way that the sums of integers in each $2\times 2$ square of the board are different. Find all $n$ for which such boards exist.

2017 Czech-Polish-Slovak Junior Match, 5

In each square of the $100\times 100$ square table, type $1, 2$, or $3$. Consider all subtables $m \times n$, where $m = 2$ and $n = 2$. A subtable will be called [i]balanced [/i] if it has in its corner boxes of four identical numbers boxes . For as large a number $k$ prove, that we can always find $k$ balanced subtables, of which no two overlap, i.e. do not have a common box.

2022 Azerbaijan JBMO TST, C4

$n$ is a natural number. Given $3n \cdot 3n$ table, the unit cells are colored white and black such that starting from the left up corner diagonals are colored in pure white or black in ratio of 2:1 respectively. ( See the picture below). In one step any chosen $2 \cdot 2$ square's white cells are colored orange, orange are colored black and black are colored white. Find all $n$ such that with finite steps, all the white cells in the table turns to black, and all black cells in the table turns to white. ( From starting point)

2020 Dürer Math Competition (First Round), P2

Initially we have a $2 \times 2$ table with at least one grain of wheat on each cell. In each step we may perform one of the following two kinds of moves: $i.$ If there is at least one grain on every cell of a row, we can take away one grain from each cell in that row. $ii.$ We can double the number of grains on each cell of an arbitrary column. a) Show that it is possible to reach the empty table using the above moves, starting from the position down below. b) Show that it is possible to reach the empty table from any starting position. c) Prove that the same is true for the $8 \times 8$ tables as well.

2012 Tournament of Towns, 4

Each entry in an $n\times n$ table is either $+$ or $-$. At each step, one can choose a row or a column and reverse all signs in it. From the initial position, it is possible to obtain the table in which all signs are $+$. Prove that this can be accomplished in at most $n$ steps.

2011 IFYM, Sozopol, 1

In the cells of a square table $n$ x $n$ the numbers $1,2,...,n^2$ are written in an arbitrary way. Prove that there exist two adjacent cells, for which the difference between the numbers written in them is no lesser than $n$.

2016 239 Open Mathematical Olympiad, 8

Given a natural number $k>1$. Find the smallest number $\alpha$ satisfying the following condition. Suppose that the table $(2k + 1) \times (2k + 1)$ is filled with real numbers not exceeding $1$ in absolute value, and the sums of the numbers in all lines are equal to zero. Then you can rearrange the numbers so that each number remains in its row and all the sums over the columns will be at most $\alpha$.