This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 619

1990 Bulgaria National Olympiad, Problem 6

The base $ABC$ of a tetrahedron $MABC$ is an equilateral triangle, and the lateral edges $MA,MB,MC$ are sides of a triangle of the area $S$. If $R$ is the circumradius and $V$ the volume of the tetrahedron, prove that $RS\ge2V$. When does equality hold?

1947 Moscow Mathematical Olympiad, 140

Prove that if the four faces of a tetrahedron are of the same area they are equal.

2011 AMC 10, 13

Two real numbers are selected independently at random from the interval [-20, 10]. What is the probability that the product of those numbers is greater than zero? $ \textbf{(A)}\ \frac{1}{9} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{4}{9} \qquad \textbf{(D)}\ \frac{5}{9} \qquad \textbf{(E)}\ \frac{2}{3} $

2012 239 Open Mathematical Olympiad, 8

We call a tetrahedron divisor of a parallelepiped if the parallelepiped can be divided into $6$ copies of that tetrahedron. Does there exist a parallelepiped that it has at least two different divisor tetrahedrons?

2000 National High School Mathematics League, 11

A sphere is tangent to six edges of a regular tetrahedron. If the length of each edge is $a$, then the volume of the sphere is________.

1984 IMO Longlists, 10

Assume that the bisecting plane of the dihedral angle at edge $AB$ of the tetrahedron $ABCD$ meets the edge $CD$ at point $E$. Denote by $S_1, S_2, S_3$, respectively the areas of the triangles $ABC, ABE$, and $ABD$. Prove that no tetrahedron exists for which $S_1, S_2, S_3$ (in this order) form an arithmetic or geometric progression.

2011 China Second Round Olympiad, 6

In a tetrahedral $ABCD$, given that $\angle ADB=\angle BDC =\angle CDA=\frac{\pi}{3}$, $AD=BD=3$, and $CD=2$. Find the radius of the circumsphere of $ABCD$.

2005 District Olympiad, 3

Prove that if the circumcircles of the faces of a tetrahedron $ABCD$ have equal radii, then $AB=CD$, $AC=BD$ and $AD=BC$.

2006 Mathematics for Its Sake, 1

[b]a)[/b] Show that there are $ 4 $ equidistant parallel planes that passes through the vertices of the same tetrahedron. [b]b)[/b] How many such $ \text{4-tuplets} $ of planes does exist, in function of the tetrahedron?

1986 IMO Longlists, 12

Let $O$ be an interior point of a tetrahedron $A_1A_2A_3A_4$. Let $ S_1, S_2, S_3, S_4$ be spheres with centers $A_1,A_2,A_3,A_4$, respectively, and let $U, V$ be spheres with centers at $O$. Suppose that for $i, j = 1, 2, 3, 4, i \neq j$, the spheres $S_i$ and $S_j$ are tangent to each other at a point $B_{ij}$ lying on $A_iA_j$ . Suppose also that $U $ is tangent to all edges $A_iA_j$ and $V$ is tangent to the spheres $ S_1, S_2, S_3, S_4$. Prove that $A_1A_2A_3A_4$ is a regular tetrahedron.

1962 Kurschak Competition, 3

$P$ is any point of the tetrahedron $ABCD$ except $D$. Show that at least one of the three distances $DA$, $DB$, $DC$ exceeds at least one of the distances $PA$, $PB$ and $PC$.

2024 All-Russian Olympiad Regional Round, 11.8

3 segments $AA_1$, $BB_1$, $CC_1$ in space share a common midpoint $M$. Turns out, the sphere circumscribed about the tetrahedron $MA_1B_1C_1$ is tangent to plane $ABC$ at point $D$. Point $O$ is the circumcenter of triangle $ABC$. Prove that $MO = MD$.

1989 Brazil National Olympiad, 5

A tetrahedron is such that the center of the its circumscribed sphere is inside the tetrahedron. Show that at least one of its edges has a size larger than or equal to the size of the edge of a regular tetrahedron inscribed in this same sphere.

2022 Oral Moscow Geometry Olympiad, 6

In a tetrahedron, segments connecting the midpoints of heights with the orthocenters of the faces to which these heights are drawn intersect at one point. Prove that in such a tetrahedron all faces are equal or there are perpendicular edges. (Yu. Blinkov)

2012 Online Math Open Problems, 50

In tetrahedron $SABC$, the circumcircles of faces $SAB$, $SBC$, and $SCA$ each have radius $108$. The inscribed sphere of $SABC$, centered at $I$, has radius $35.$ Additionally, $SI = 125$. Let $R$ be the largest possible value of the circumradius of face $ABC$. Given that $R$ can be expressed in the form $\sqrt{\frac{m}{n}}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$. [i]Author: Alex Zhu[/i]

2016 Saint Petersburg Mathematical Olympiad, 3

In a tetrahedron, the midpoints of all the edges lie on the same sphere. Prove that it's altitudes intersect at one point.

2004 Germany Team Selection Test, 1

Let $a_{ij}$ $i=1,2,3$; $j=1,2,3$ be real numbers such that $a_{ij}$ is positive for $i=j$ and negative for $i\neq j$. Prove the existence of positive real numbers $c_{1}$, $c_{2}$, $c_{3}$ such that the numbers \[a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},\qquad a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},\qquad a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}\] are either all negative, all positive, or all zero. [i]Proposed by Kiran Kedlaya, USA[/i]

1992 Mexico National Olympiad, 1

The tetrahedron $OPQR$ has the $\angle POQ = \angle POR = \angle QOR = 90^o$. $X, Y, Z$ are the midpoints of $PQ, QR$ and $RP.$ Show that the four faces of the tetrahedron $OXYZ$ have equal area.

1995 IMO Shortlist, 6

Let $ A_1A_2A_3A_4$ be a tetrahedron, $ G$ its centroid, and $ A'_1, A'_2, A'_3,$ and $ A'_4$ the points where the circumsphere of $ A_1A_2A_3A_4$ intersects $ GA_1,GA_2,GA_3,$ and $ GA_4,$ respectively. Prove that \[ GA_1 \cdot GA_2 \cdot GA_3 \cdot GA_ \cdot4 \leq GA'_1 \cdot GA'_2 \cdot GA'_3 \cdot GA'_4\] and \[ \frac{1}{GA'_1} \plus{} \frac{1}{GA'_2} \plus{} \frac{1}{GA'_3} \plus{} \frac{1}{GA'_4} \leq \frac{1}{GA_1} \plus{} \frac{1}{GA_2} \plus{} \frac{1}{GA_3} \plus{} \frac{1}{GA_4}.\]

1981 Romania Team Selection Tests, 2.

Consider a tetrahedron $OABC$ with $ABC$ equilateral. Let $S$ be the area of the triangle of sides $OA$, $OB$ and $OC$. Show that $V\leqslant \dfrac12 RS$ where $R$ is the circumradius and $V$ is the volume of the tetrahedron. [i]Stere IanuČ™[/i]

1970 IMO, 2

In the tetrahedron $ABCD,\angle BDC=90^o$ and the foot of the perpendicular from $D$ to $ABC$ is the intersection of the altitudes of $ABC$. Prove that: \[ (AB+BC+CA)^2\le6(AD^2+BD^2+CD^2). \] When do we have equality?

1970 Czech and Slovak Olympiad III A, 2

Determine whether there is a tetrahedron $ABCD$ with the longest edge of length 1 such that all its faces are similar right triangles with right angles at vertices $B,C.$ If so, determine which edge is the longest, which is the shortest and what is its length.

1979 IMO Longlists, 36

A regular tetrahedron $A_1B_1C_1D_1$ is inscribed in a regular tetrahedron $ABCD$, where $A_1$ lies in the plane $BCD$, $B_1$ in the plane $ACD$, etc. Prove that $A_1B_1 \ge\frac{ AB}{3}$.

1996 Polish MO Finals, 1

$ABCD$ is a tetrahedron with $\angle BAC = \angle ACD$ and $\angle ABD = \angle BDC$. Show that $AB = CD$.

1972 IMO, 3

Given four distinct parallel planes, prove that there exists a regular tetrahedron with a vertex on each plane.