Found problems: 178
1999 Tournament Of Towns, 5
Is it possible to divide a $6 \times 6$ chessboard into $18$ rectangles, each either $1 \times 2$ or $2 \times 1$, and to draw exactly one diagonal on each rectangle such that no two of these diagonals have a common endpoint?
(A Shapovalov)
2018 International Zhautykov Olympiad, 4
Crocodile chooses $1$ x $4$ tile from $2018$ x $2018$ square.The bear has tilometer that checks $3$x$3$ square of $2018$ x $2018$ is there any of choosen cells by crocodile.Tilometer says "YES" if there is at least one choosen cell among checked $3$ x $3$ square.For what is the smallest number of such questions the Bear can certainly get an affirmative answer?
2020 March Advanced Contest, 3
A [i]simple polygon[/i] is a polygon whose perimeter does not self-intersect. Suppose a simple polygon $\mathcal P$ can be tiled with a finite number of parallelograms. Prove that regardless of the tiling, the sum of the areas of all rectangles in the tiling is fixed.\\
[i]Note:[/i] Points will be awarded depending on the generality of the polygons for which the result is proven.
2015 All-Russian Olympiad, 5
It is known that a cells square can be cut into $n$ equal figures of $k$ cells.
Prove that it is possible to cut it into $k$ equal figures of $n$ cells.
2013 Greece Team Selection Test, 4
Let $n$ be a positive integer. An equilateral triangle with side $n$ will be denoted by $T_n$ and is divided in $n^2$ unit equilateral triangles with sides parallel to the initial, forming a grid. We will call "trapezoid" the trapezoid which is formed by three equilateral triangles (one base is equal to one and the other is equal to two).
Let also $m$ be a positive integer with $m<n$ and suppose that $T_n$ and $T_m$ can be tiled with "trapezoids".
Prove that, if from $T_n$ we remove a $T_m$ with the same orientation, then the rest can be tiled with "trapezoids".
2018 India IMO Training Camp, 1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.
[i]Proposed by Jeck Lim, Singapore[/i]
2020 Durer Math Competition Finals, 1
How many ways are there to tile a $3 \times 3$ square with $4$ dominoes of size $1 \times 2$ and $1$ domino of size $1 \times 1$?
Tilings that can be obtained from each other by rotating the square are considered different. Dominoes of the same size are completely identical
2010 CHMMC Winter, 3
Compute the number of ways of tiling the $2\times 10$ grid below with the three tiles shown. There is an infinite supply of each tile, and rotating or reflecting the tiles is not allowed.
[img]https://cdn.artofproblemsolving.com/attachments/5/a/bb279c486fc85509aa1bcabcda66a8ea3faff8.png[/img]
2016 EGMO, 5
Let $k$ and $n$ be integers such that $k\ge 2$ and $k \le n \le 2k-1$. Place rectangular tiles, each of size $1 \times k$, or $k \times 1$ on a $n \times n$ chessboard so that each tile covers exactly $k$ cells and no two tiles overlap. Do this until no further tile can be placed in this way. For each such $k$ and $n$, determine the minimum number of tiles that such an arrangement may contain.
2022 Cyprus TST, 4
Let $m, n$ be positive integers with $m<n$ and consider an $n\times n$ board from which its upper left $ m\times m$ part has been removed. An example of such board for $n=5$ and $m=2$ is shown below.
Determine for which pairs $(m, n)$ this board can be tiled with $3\times 1$ tiles. Each tile can be positioned either horizontally or vertically so that it covers exactly three squares of the board. The tiles should not overlap and should not cover squares outside of the board.
2015 China Northern MO, 6
The figure obtained by removing one small unit square from the $2\times 2$ grid table is called an $L$ ''shape". .Put $k$ L-shapes in an $8\times 8$ grid table. Each $L$-shape can be rotated, but each $L$ shape is required to cover exactly three small unit squares in the grid table, and the common area covered by any two $L$ shapes is $0$, and except for these $k$ $L$ shapes, no other $L$ shapes can be placed. Find the minimum value of $k$.
2019 Tournament Of Towns, 3
Prove that any triangle can be cut into $2019$ quadrilaterals such that each quadrilateral is both inscribed and circumscribed.
(Nairi Sedrakyan)
2006 IMO Shortlist, 6
A holey triangle is an upward equilateral triangle of side length $n$ with $n$ upward unit triangular holes cut out. A diamond is a $60^\circ-120^\circ$ unit rhombus.
Prove that a holey triangle $T$ can be tiled with diamonds if and only if the following condition holds: Every upward equilateral triangle of side length $k$ in $T$ contains at most $k$ holes, for $1\leq k\leq n$.
[i]Proposed by Federico Ardila, Colombia [/i]
1989 All Soviet Union Mathematical Olympiad, 498
A $23 \times 23$ square is tiled with $1 \times 1, 2 \times 2$ and $3 \times 3$ squares. What is the smallest possible number of $1 \times 1$ squares?
2006 Estonia Team Selection Test, 3
A grid measuring $10 \times 11$ is given. How many "crosses" covering five unit squares can be placed on the grid?
(pictured right) so that no two of them cover the same square?
[img]https://cdn.artofproblemsolving.com/attachments/a/7/8a5944233785d960f6670e34ca7c90080f0bd6.png[/img]
2007 Switzerland - Final Round, 3
The plane is divided into unit squares. Each box should be be colored in one of $n$ colors , so that if four squares can be covered with an $L$-tetromino, then these squares have four different colors (the $L$-Tetromino may be rotated and be mirrored). Find the smallest value of $n$ for which this is possible.
KoMaL A Problems 2018/2019, A. 749
Given are two polyominos, the first one is an L-shape consisting of three squares, the other one contains at least two squares. Prove that if $n$ and $m$ are coprime then at most one of the $n\times n$ and $m\times m$ boards can be tiled by translated copies of the two polyominos.
[i]Proposed by: András Imolay, Dávid Matolcsi, Ádám Schweitzer and Kristóf Szabó, Budapest[/i]
2018 MMATHS, 1
Daniel has an unlimited supply of tiles labeled “$2$” and “$n$” where $n$ is an integer. Find (with proof) all the values of $n$ that allow Daniel to fill an $8 \times 10$ grid with these tiles such that the sum of the values of the tiles in each row or column is divisible by $11$.
1990 Austrian-Polish Competition, 8
We are given a supply of $a \times b$ tiles with $a$ and $b$ distinct positive integers. The tiles are to be used to tile a $28 \times 48$ rectangle. Find $a, b$ such that the tile has the smallest possible area and there is only one possible tiling. (If there are two distinct tilings, one of which is a reflection of the other, then we treat that as more than one possible tiling. Similarly for other symmetries.) Find $a, b$ such that the tile has the largest possible area and there is more than one possible tiling.
2024 Baltic Way, 7
A $45 \times 45$ grid has had the central unit square removed. For which positive integers $n$ is it possible to cut the remaining area into $1 \times n$ and $n\times 1$ rectangles?
2022 Federal Competition For Advanced Students, P2, 6
(a) Prove that a square with sides $1000$ divided into $31$ squares tiles, at least one of which has a side length less than $1$.
(b) Show that a corresponding decomposition into $30$ squares is also possible.
[i](Walther Janous)[/i]
2022 Austrian MO National Competition, 6
(a) Prove that a square with sides $1000$ divided into $31$ squares tiles, at least one of which has a side length less than $1$.
(b) Show that a corresponding decomposition into $30$ squares is also possible.
[i](Walther Janous)[/i]
2021-IMOC, C8
Find all positive integers $m,n$ such that the $m \times n$ grid can be tiled with figures formed by deleting one of the corners of a $2 \times 3$ grid.
[i]usjl, ST[/i]
2022 Nigerian MO round 3, Problem 3
A unit square is removed from the corner of an $n \times n$ grid, where $n \geq 2$. Prove that the remainder can be covered by copies of the figures of $3$ or $5$ unit squares depicted in the drawing below.
[asy]
import geometry;
draw((-1.5,0)--(-3.5,0)--(-3.5,2)--(-2.5,2)--(-2.5,1)--(-1.5,1)--cycle);
draw((-3.5,1)--(-2.5,1)--(-2.5,0));
draw((0.5,0)--(0.5,3)--(1.5,3)--(1.5,1)--(3.5,1)--(3.5,0)--cycle);
draw((1.5,0)--(1.5,1));
draw((2.5,0)--(2.5,1));
draw((0.5,1)--(1.5,1));
draw((0.5,2)--(1.5,2));
[/asy]
[b]Note:[/b] Every square must be covered once and figures must not go over the bounds of the grid.
2017 Romanian Masters In Mathematics, 5
Fix an integer $n \geq 2$. An $n\times n$ sieve is an $n\times n$ array with $n$ cells removed so that exactly one cell is removed from every row and every column. A stick is a $1\times k$ or $k\times 1$ array for any positive integer $k$. For any sieve $A$, let $m(A)$ be the minimal number of sticks required to partition $A$. Find all possible values of $m(A)$, as $A$ varies over all possible $n\times n$ sieves.
[i]Palmer Mebane[/i]