This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 178

1987 Tournament Of Towns, (135) 4

We are given tiles in the form of right angled triangles having perpendicular sides of length $1$ cm and $2$ cm. Is it possible to form a square from $20$ such tiles? ( S . Fomin , Leningrad)

2018 India IMO Training Camp, 1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

2020 Thailand TSTST, 6

Prove that the unit square can be tiled with rectangles (not necessarily of the same size) similar to a rectangle of size $1\times(3+\sqrt[3]{3})$.

1984 Tournament Of Towns, (079) 5

A $7 \times 7$ square is made up of $16$ $1 \times 3$ tiles and $1$ $1 \times 1$ tile. Prove that the $1 \times 1$ tile lies either at the centre of the square or adjoins one of its boundaries .

1992 All Soviet Union Mathematical Olympiad, 578

An equilateral triangle side $10$ is divided into $100$ equilateral triangles of side $1$ by lines parallel to its sides. There are m equilateral tiles of $4$ unit triangles and $25 - m$ straight tiles of $4$ unit triangles (as shown below). For which values of $m$ can they be used to tile the original triangle. [The straight tiles may be turned over.]

2015 Caucasus Mathematical Olympiad, 3

The workers laid a floor of size $n \times n$ with tiles of two types: $2 \times 2$ and $3 \times 1$. It turned out that they were able to completely lay the floor in such a way that the same number of tiles of each type was used. Under what conditions could this happen? (You can’t cut tiles and also put them on top of each other.)

1997 Denmark MO - Mohr Contest, 5

A $7\times 7$ square is cut into pieces following types: [img]https://cdn.artofproblemsolving.com/attachments/e/d/458b252c719946062b655340cbe8415d1bdaf9.png[/img] Show that exactly one of the pieces is of type (b). [img]https://cdn.artofproblemsolving.com/attachments/4/9/f3dd0e13fed9838969335c82f5fe866edc83e8.png[/img]

2019 India IMO Training Camp, P2

Let $n$ be a natural number. A tiling of a $2n \times 2n$ board is a placing of $2n^2$ dominos (of size $2 \times 1$ or $1 \times 2$) such that each of them covers exactly two squares of the board and they cover all the board.Consider now two [i]sepearate tilings[/i] of a $2n \times 2n$ board: one with red dominos and the other with blue dominos. We say two squares are red neighbours if they are covered by the same red domino in the red tiling; similarly define blue neighbours. Suppose we can assign a non-zero integer to each of the squares such that the number on any square equals the difference between the numbers on it's red and blue neighbours i.e the number on it's red neigbhbour minus the number on its blue neighbour. Show that $n$ is divisible by $3$ [i] Proposed by Tejaswi Navilarekallu [/i]

2016 Danube Mathematical Olympiad, 4

A unit square is removed from the corner of an $n\times n$ grid where $n \geq 2$. Prove that the remainder can be covered by copies of the "L-shapes" consisting of $3$ or $5$ unit square, as depicted in the figure below. Every square must be covered once and the L-shapes must not go over the bounds of the grid. [asy] import geometry; draw((-1.5,0)--(-3.5,0)--(-3.5,2)--(-2.5,2)--(-2.5,1)--(-1.5,1)--cycle); draw((-3.5,1)--(-2.5,1)--(-2.5,0)); draw((0.5,0)--(0.5,3)--(1.5,3)--(1.5,1)--(3.5,1)--(3.5,0)--cycle); draw((1.5,0)--(1.5,1)); draw((2.5,0)--(2.5,1)); draw((0.5,1)--(1.5,1)); draw((0.5,2)--(1.5,2)); [/asy][i]Estonian Olympiad, 2009[/i]

2020 Malaysia IMONST 2, 1

Given a trapezium with two parallel sides of lengths $m$ and $n$, where $m$, $n$ are integers, prove that it is possible to divide the trapezium into several congruent triangles.

2017 SG Originals, C1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

2004 IMO, 3

Define a "hook" to be a figure made up of six unit squares as shown below in the picture, or any of the figures obtained by applying rotations and reflections to this figure. [asy] unitsize(0.5 cm); draw((0,0)--(1,0)); draw((0,1)--(1,1)); draw((2,1)--(3,1)); draw((0,2)--(3,2)); draw((0,3)--(3,3)); draw((0,0)--(0,3)); draw((1,0)--(1,3)); draw((2,1)--(2,3)); draw((3,1)--(3,3)); [/asy] Determine all $ m\times n$ rectangles that can be covered without gaps and without overlaps with hooks such that - the rectangle is covered without gaps and without overlaps - no part of a hook covers area outside the rectangle.

1999 Poland - Second Round, 2

A cube of edge $2$ with one of the corner unit cubes removed is called a [i]piece[/i]. Prove that if a cube $T$ of edge $2^n$ is divided into $2^{3n}$ unit cubes and one of the unit cubes is removed, then the rest can be cut into [i]pieces[/i].

1993 Italy TST, 4

An $m \times n$ chessboard with $m,n \ge 2$ is given. Some dominoes are placed on the chessboard so that the following conditions are satisfied: (i) Each domino occupies two adjacent squares of the chessboard, (ii) It is not possible to put another domino onto the chessboard without overlapping, (iii) It is not possible to slide a domino horizontally or vertically without overlapping. Prove that the number of squares that are not covered by a domino is less than $\frac15 mn$.

2018 Germany Team Selection Test, 1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

2006 Singapore Junior Math Olympiad, 5

You have a large number of congruent equilateral triangular tiles on a table and you want to fit $n$ of them together to make a convex equiangular hexagon (i.e. one whose interior angles are $120^o$) . Obviously, $n$ cannot be any positive integer. The first three feasible $n$ are $6, 10$ and $13$. Show that $12$ is not feasible but $14$ is.

2018 Belarusian National Olympiad, 11.4

A checkered polygon $A$ is drawn on the checkered plane. We call a cell of $A$ [i]internal[/i] if all $8$ of its adjacent cells belong to $A$. All other (non-internal) cells of $A$ we call [i]boundary[/i]. It is known that $1)$ each boundary cell has exactly two common sides with no boundary cells; and 2) the union of all boundary cells can be divided into isosceles trapezoid of area $2$ with vertices at the grid nodes (and acute angles of the trapezoids are equal $45^\circ$). Prove that the area of the polygon $A$ is congruent to $1$ modulo $4$.

1999 Estonia National Olympiad, 5

There is a hole in the roof with dimensions $23 \times 19$ cm. Can August fill the the roof with tiles of dimensions $5 \times 24 \times 30$ cm?

2018 Argentina National Olympiad, 3

You have a $7\times 7$ board divided into $49$ boxes. Mateo places a coin in a box. a) Prove that Mateo can place the coin so that it is impossible for Emi to completely cover the $48$ remaining squares, without gaps or overlaps, using $15$ $3\times1$ rectangles and a cubit of three squares, like those in the figure. [img]https://cdn.artofproblemsolving.com/attachments/6/9/a467439094376cd95c6dfe3e2ad3e16fe9f124.png[/img] b) Prove that no matter which square Mateo places the coin in, Emi will always be able to cover the 48 remaining squares using $14$ $3\times1$ rectangles and two cubits of three squares.

2017 Romanian Master of Mathematics, 5

Fix an integer $n \geq 2$. An $n\times n$ sieve is an $n\times n$ array with $n$ cells removed so that exactly one cell is removed from every row and every column. A stick is a $1\times k$ or $k\times 1$ array for any positive integer $k$. For any sieve $A$, let $m(A)$ be the minimal number of sticks required to partition $A$. Find all possible values of $m(A)$, as $A$ varies over all possible $n\times n$ sieves. [i]Palmer Mebane[/i]

2015 Caucasus Mathematical Olympiad, 3

The workers laid a floor of size $n\times n$ ($10 <n <20$) with two types of tiles: $2 \times 2$ and $5\times 1$. It turned out that they were able to completely lay the floor so that the same number of tiles of each type was used. For which $n$ could this happen? (You can’t cut tiles and also put them on top of each other.)

2000 Chile National Olympiad, 6

With $76$ tiles, of which some are white, other blue and the remaining red, they form a rectangle of $4 \times 19$. Show that there is a rectangle, inside the largest, that has its vertices of the same color.

2021 Iranian Combinatorics Olympiad, P5

By a $\emph{tile}$ we mean a polyomino (i.e. a finite edge-connected set of cells in the infinite grid). There are many ways to place a tile in the infinite table (rotation is allowed but we cannot flip the tile). We call a tile $\textbf{T}$ special if we can place a permutation of the positive integers on all cells of the infinite table in such a way that each number would be maximum between all the numbers that tile covers in at most one placement of the tile. 1. Prove that each square is a special tile. 2. Prove that each non-square rectangle is not a special tile. 3. Prove that tile $\textbf{T}$ is special if and only if it looks the same after $90^\circ$ rotation.

2025 Kyiv City MO Round 2, Problem 4

A square \( K = 2025 \times 2025 \) is given. We define a [i]stick[/i] as a rectangle where one of its sides is \( 1 \), and the other side is a positive integer from \( 1 \) to \( 2025 \). Find the largest positive integer \( C \) such that the following condition holds: [list] [*] If several sticks with a total area not exceeding \( C \) are taken, it is always possible to place them inside the square \( K \) so that each stick fully completely covers an integer number of \( 1 \times 1 \) squares, and no \( 1 \times 1 \) square is covered by more than one stick. [/list] [i](Basically, you can rotate sticks, but they have to be aligned by lines of the grid)[/i] [i]Proposed by Anton Trygub[/i]

2017 International Zhautykov Olympiad, 3

Rectangle on a checked paper with length of a unit square side being $1$ Is divided into domino figures( two unit square sharing a common edge). Prove that you colour all corners of squares on the edge of rectangle and inside rectangle with $3$ colours such that for any two corners with distance $1$ the following conditions hold: they are coloured in different colour if the line connecting the two corners is on the border of two domino figures and coloured in same colour if the line connecting the two corners is inside a domino figure.