Found problems: 235
2013 Thailand Mathematical Olympiad, 3
Each point on the plane is colored either red or blue. Show that there are three points of the same color that form a triangle with side lengths $1, 2,\sqrt3$.
2012 Canada National Olympiad, 4
A number of robots are placed on the squares of a finite, rectangular grid of squares. A square can hold any number of robots. Every edge of each square of the grid is classified as either passable or impassable. All edges on the boundary of the grid are impassable. You can give any of the commands up, down, left, or right.
All of the robots then simultaneously try to move in the specified direction. If the edge adjacent to a robot in that direction is passable, the robot moves across the edge and into the next square. Otherwise, the robot remains on its current square. You can then give another command of up, down, left, or right, then another, for as long as you want. Suppose that for any individual robot, and any square on the grid, there is a finite sequence of commands that will move that robot to that square. Prove that you can also give a finite sequence of commands such that all of the robots end up on the same square at the same time.
2012 AMC 10, 21
Four distinct points are arranged in a plane so that the segments connecting them has lengths $a,a,a,a,2a,$ and $b$. What is the ratio of $b$ to $a$?
$ \textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ \pi $
2009 Harvard-MIT Mathematics Tournament, 10
Points $A$ and $B$ lie on circle $\omega$. Point $P$ lies on the extension of segment $AB$ past $B$. Line $\ell$ passes through $P$ and is tangent to $\omega$. The tangents to $\omega$ at points $A$ and $B$ intersect $\ell$ at points $D$ and $C$ respectively. Given that $AB=7$, $BC=2$, and $AD=3$, compute $BP$.
2009 Romanian Masters In Mathematics, 1
For $ a_i \in \mathbb{Z}^ \plus{}$, $ i \equal{} 1, \ldots, k$, and $ n \equal{} \sum^k_{i \equal{} 1} a_i$, let $ d \equal{} \gcd(a_1, \ldots, a_k)$ denote the greatest common divisor of $ a_1, \ldots, a_k$.
Prove that $ \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i \equal{} 1} (a_i!)}$ is an integer.
[i]Dan Schwarz, Romania[/i]
2010 Saudi Arabia Pre-TST, 4.2
Let $a$ be a real number.
1) Prove that there is a triangle with side lengths $\sqrt{a^2-a + 1}$, $\sqrt{a^2+a + 1}$, and $\sqrt{4a^2 + 3}$.
2) Prove that the area of this triangle does not depend on $a$.
2017 Mexico National Olympiad, 4
A subset $B$ of $\{1, 2, \dots, 2017\}$ is said to have property $T$ if any three elements of $B$ are the sides of a nondegenerate triangle. Find the maximum number of elements that a set with property $T$ may contain.
2001 APMO, 3
Two equal-sized regular $n$-gons intersect to form a $2n$-gon $C$. Prove that the sum of the sides of $C$ which form part of one $n$-gon equals half the perimeter of $C$.
[i]Alternative formulation:[/i]
Let two equal regular $n$-gons $S$ and $T$ be located in the plane such that their intersection $S\cap T$ is a $2n$-gon (with $n\ge 3$). The sides of the polygon $S$ are coloured in red and the sides of $T$ in blue.
Prove that the sum of the lengths of the blue sides of the polygon $S\cap T$ is equal to the sum of the lengths of its red sides.
1972 USAMO, 2
A given tetrahedron $ ABCD$ is isoceles, that is, $ AB\equal{}CD$, $ AC\equal{}BD$, $ AD\equal{}BC$. Show that the faces of the tetrahedron are acute-angled triangles.
2006 Oral Moscow Geometry Olympiad, 2
Six segments are such that any three can form a triangle. Is it true that these segments can be used to form a tetrahedron?
(S. Markelov)
1973 Putnam, A1
(a) Let $ABC$ be any triangle. Let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively.
Suppose that $BX \leq XC, CY \leq YA, AZ \leq ZB$. Show that the area of the triangle $XYZ$ $\geq 1\slash 4$ times the area of $ABC.$
(b) Let $ABC$ be any triangle, and let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively. Using (a) or by any other method, show: One of the three corner triangles $AZY, BXZ, CYX$ has an area $\leq$ area of the triangle $XYZ.$
2004 France Team Selection Test, 3
Each point of the plane with two integer coordinates is the center of a disk with radius $ \frac {1} {1000}$.
Prove that there exists an equilateral triangle whose vertices belong to distinct disks.
Prove that such a triangle has side-length greater than 96.
2021 239 Open Mathematical Olympiad, 5
The median $AD$ is drawn in triangle $ABC$. Point $E$ is selected on segment $AC$, and on the ray $DE$ there is a point $F$, and $\angle ABC = \angle AED$ and $AF // BC$. Prove that from segments $BD, DF$ and $AF$, you can make a triangle, the area of which is not less half the area of triangle $ABC$.
Kyiv City MO 1984-93 - geometry, 1988.10.2
Given an arbitrary tetrahedron. Prove that its six edges can be divided into two triplets so that from each triple it was possible to form a triangle.
1999 Brazil Team Selection Test, Problem 4
Let Q+ and Z denote the set of positive rationals and the set of inte-
gers, respectively. Find all functions f : Q+ → Z satisfying the following
conditions:
(i) f(1999) = 1;
(ii) f(ab) = f(a) + f(b) for all a, b ∈ Q+;
(iii) f(a + b) ≥ min{f(a), f(b)} for all a, b ∈ Q+.
1990 India National Olympiad, 5
Let $ a$, $ b$, $ c$ denote the sides of a triangle. Show that the quantity
\[ \frac{a}{b\plus{}c}\plus{}\frac{b}{c\plus{}a}\plus{}\frac{c}{a\plus{}b}\]
must lie between the limits $ 3/2$ and 2. Can equality hold at either limits?
1968 IMO Shortlist, 3
Prove that every tetrahedron has a vertex whose three edges have the right lengths to form a triangle.
2014 India IMO Training Camp, 2
For $j=1,2,3$ let $x_{j},y_{j}$ be non-zero real numbers, and let $v_{j}=x_{j}+y_{j}$.Suppose that the following statements hold:
$x_{1}x_{2}x_{3}=-y_{1}y_{2}y_{3}$
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^2$
$v_{1},v_{2},v_{3}$ satisfy triangle inequality
$v_{1}^{2},v_{2}^{2},v_{3}^{2}$ also satisfy triangle inequality.
Prove that exactly one of $x_{1},x_{2},x_{3},y_{1},y_{2},y_{3}$ is negative.
2011 AMC 10, 25
Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$?
$ \textbf{(A)}\ \frac{1509}{8} \qquad
\textbf{(B)}\ \frac{1509}{32} \qquad
\textbf{(C)}\ \frac{1509}{64} \qquad
\textbf{(D)}\ \frac{1509}{128} \qquad
\textbf{(E)}\ \frac{1509}{256} $
1997 India Regional Mathematical Olympiad, 5
Let $x,y,z$ be three distinct real positive numbers, Determine whether or not the three real numbers \[ \left| \frac{x}{y} - \frac{y}{x}\right| ,\left| \frac{y}{z} - \frac{z}{y}\right |, \left| \frac{z}{x} - \frac{x}{z}\right| \] can be the lengths of the sides of a triangle.
Kyiv City MO Juniors 2003+ geometry, 2014.7.41
The sides of triangles $ABC$ and $ACD$ satisfy the following conditions: $AB = AD = 3$ cm, $BC = 7$ cm, $DC = 11$ cm. What values can the side length $AC$ take if it is an integer number of centimeters, is the average in $\Delta ACD$ and the largest in $\Delta ABC$?
2005 iTest, 18
If the four sides of a quadrilateral are $2, 3, 6$, and $x$, find the sum of all possible integral values for $x$.
2009 AMC 12/AHSME, 10
In quadrilateral $ ABCD$, $ AB \equal{} 5$, $ BC \equal{} 17$, $ CD \equal{} 5$, $ DA \equal{} 9$, and $ BD$ is an integer. What is $ BD$?
[asy]unitsize(4mm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
dotfactor=4;
pair C=(0,0), B=(17,0);
pair D=intersectionpoints(Circle(C,5),Circle(B,13))[0];
pair A=intersectionpoints(Circle(D,9),Circle(B,5))[0];
pair[] dotted={A,B,C,D};
draw(D--A--B--C--D--B);
dot(dotted);
label("$D$",D,NW);
label("$C$",C,W);
label("$B$",B,E);
label("$A$",A,NE);[/asy]$ \textbf{(A)}\ 11 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 14 \qquad \textbf{(E)}\ 15$
2012 AIME Problems, 6
Let $z = a + bi$ be the complex number with $|z| = 5$ and $b > 0$ such that the distance between $(1 + 2i)z^3$ and $z^5$ is maximized, and let $z^4 = c + di$.
Find $c+d$.
2017 QEDMO 15th, 8
Let $ABC$ be a triangle of area $1$ with medians $s_a, s_b,s_c$. Show that there is a triangle whose sides are the same length as $s_a, s_b$, and $s_c$, and determine its area.