Found problems: 239
1989 AIME Problems, 12
Let $ABCD$ be a tetrahedron with $AB=41$, $AC=7$, $AD=18$, $BC=36$, $BD=27$, and $CD=13$, as shown in the figure. Let $d$ be the distance between the midpoints of edges $AB$ and $CD$. Find $d^{2}$.
[asy]
pair C=origin, D=(4,11), A=(8,-5), B=(16,0);
draw(A--B--C--D--B^^D--A--C);
draw(midpoint(A--B)--midpoint(C--D), dashed);
label("27", B--D, NE);
label("41", A--B, SE);
label("7", A--C, SW);
label("$d$", midpoint(A--B)--midpoint(C--D), NE);
label("18", (7,8), SW);
label("13", (3,9), SW);
pair point=(7,0);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));[/asy]
2011 USA TSTST, 7
Let $ABC$ be a triangle. Its excircles touch sides $BC, CA, AB$ at $D, E, F$, respectively. Prove that the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$.
2012 Online Math Open Problems, 8
In triangle $ABC$ let $D$ be the foot of the altitude from $A$. Suppose that $AD = 4$, $BD = 3$, $CD = 2$, and $AB$ is extended past $B$ to a point $E$ such that $BE = 5$. Determine the value of $CE^2$.
[i]Ray Li.[/i]
[hide="Clarifications"][list=1][*]Triangle $ABC$ is acute.[/list][/hide]
2005 Postal Coaching, 10
On the sides $AB$ and $BC$ of triangle $ABC$, points $K$ and $M$ are chosen such that the quadrilaterals $AKMC$ and $KBMN$ are cyclic , where $N = AM \cap CK$ . If these quads have the same circumradii, find $\angle ABC$
2011 Uzbekistan National Olympiad, 3
Given an acute triangle $ABC$ with altituties AD and BE. O circumcinter of $ABC$.If o lies on the segment DE then find the value of $sinAsinBcosC$
1985 IMO Longlists, 39
Given a triangle $ABC$ and external points $X, Y$ , and $Z$ such that $\angle BAZ = \angle CAY , \angle CBX = \angle ABZ$, and $\angle ACY = \angle BCX$, prove that $AX,BY$ , and $CZ$ are concurrent.
2013 CentroAmerican, 2
Let $ABC$ be an acute triangle and let $\Gamma$ be its circumcircle. The bisector of $\angle{A}$ intersects $BC$ at $D$, $\Gamma$ at $K$ (different from $A$), and the line through $B$ tangent to $\Gamma$ at $X$. Show that $K$ is the midpoint of $AX$ if and only if $\frac{AD}{DC}=\sqrt{2}$.
2008 Moldova National Olympiad, 9.3
From the vertex $ A$ of the equilateral triangle $ ABC$ a line is drown that intercepts the segment $ [BC]$ in the point $ E$. The point $ M \in (AE$ is such that $ M$ external to $ ABC$, $ \angle AMB \equal{} 20 ^\circ$ and $ \angle AMC \equal{} 30 ^ \circ$. What is the measure of the angle $ \angle MAB$?
2010 Polish MO Finals, 3
$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.
2003 AIME Problems, 10
Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ$. Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ$. Find the number of degrees in $\angle CMB$.
2014 Math Prize For Girls Problems, 8
A triangle has sides of length $\sqrt{13}$, $\sqrt{17}$, and $2 \sqrt{5}$. Compute the area of the triangle.
2013 Sharygin Geometry Olympiad, 6
The altitudes $AA_1, BB_1, CC_1$ of an acute triangle $ABC$ concur at $H$. The perpendicular lines from $H$ to $B_1C_1, A_1C_1$ meet rays $CA, CB$ at $P, Q$ respectively. Prove that the line from $C$ perpendicular to $A_1B_1$ passes through the midpoint of $PQ$.
2012 Tuymaada Olympiad, 2
Quadrilateral $ABCD$ is both cyclic and circumscribed. Its incircle touches its sides $AB$ and $CD$ at points $X$ and $Y$, respectively. The perpendiculars to $AB$ and $CD$ drawn at $A$ and $D$, respectively, meet at point $U$; those drawn at $X$ and $Y$ meet at point $V$, and finally, those drawn at $B$ and $C$ meet at point $W$. Prove that points $U$, $V$ and $W$ are collinear.
[i]Proposed by A. Golovanov[/i]
1979 IMO Longlists, 74
Given an equilateral triangle $ABC$ of side $a$ in a plane, let $M$ be a point on the circumcircle of the triangle. Prove that the sum $s = MA^4 +MB^4 +MC^4$ is independent of the position of the point $M$ on the circle, and determine that constant value as a function of $a$.
2013 Stanford Mathematics Tournament, 2
Points $A$, $B$, and $C$ lie on a circle of radius $5$ such that $AB=6$ and $AC=8$. Find the smaller of the two possible values of $BC$.
2014 Contests, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
1996 IMO Shortlist, 4
Let $ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ at the points $A_1$, $B_1$, $C_1$, respectively. Prove that
$A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$.
2011 Purple Comet Problems, 24
The diagram below shows a regular hexagon with an inscribed square where two sides of the square are parallel to two sides of the hexagon. There are positive integers $m$, $n$, and $p$ such that the ratio of the area of the hexagon to the area of the square can be written as $\tfrac{m+\sqrt{n}}{p}$ where $m$ and $p$ are relatively prime. Find $m + n + p$.
[asy]
import graph; size(4cm);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,1)--(1,1)--(1.5,1.87)--(1,2.73)--(0,2.73)--(-0.5,1.87)--cycle);
filldraw((1.13,2.5)--(-0.13,2.5)--(-0.13,1.23)--(1.13,1.23)--cycle,grey);
draw((0,1)--(1,1));
draw((1,1)--(1.5,1.87));
draw((1.5,1.87)--(1,2.73));
draw((1,2.73)--(0,2.73));
draw((0,2.73)--(-0.5,1.87));
draw((-0.5,1.87)--(0,1));
draw((1.13,2.5)--(-0.13,2.5));
draw((-0.13,2.5)--(-0.13,1.23));
draw((-0.13,1.23)--(1.13,1.23));
draw((1.13,1.23)--(1.13,2.5)); [/asy]
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
2007 Balkan MO, 1
Let $ABCD$ a convex quadrilateral with $AB=BC=CD$, with $AC$ not equal to $BD$ and $E$ be the intersection point of it's diagonals. Prove that $AE=DE$ if and only if $\angle BAD+\angle ADC = 120$.
2013 AMC 12/AHSME, 24
Three distinct segments are chosen at random among the segments whose end-points are the vertices of a regular 12-gon. What is the probability that the lengths of these three segments are the three side lengths of a triangle with positive area?
$ \textbf{(A)} \ \frac{553}{715} \qquad \textbf{(B)} \ \frac{443}{572} \qquad \textbf{(C)} \ \frac{111}{143} \qquad \textbf{(D)} \ \frac{81}{104} \qquad \textbf{(E)} \ \frac{223}{286}$
2016 Harvard-MIT Mathematics Tournament, 15
Compute $\tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{3\pi}{7}\right)$.
2014 NIMO Problems, 4
Points $A$, $B$, $C$, and $D$ lie on a circle such that chords $\overline{AC}$ and $\overline{BD}$ intersect at a point $E$ inside the circle. Suppose that $\angle ADE =\angle CBE = 75^\circ$, $BE=4$, and $DE=8$. The value of $AB^2$ can be written in the form $a+b\sqrt{c}$ for positive integers $a$, $b$, and $c$ such that $c$ is not divisible by the square of any prime. Find $a+b+c$.
[i]Proposed by Tony Kim[/i]
Swiss NMO - geometry, 2011.2
Let $\triangle{ABC}$ be an acute-angled triangle and let $D$, $E$, $F$ be points on $BC$, $CA$, $AB$, respectively, such that \[\angle{AFE}=\angle{BFD}\mbox{,}\quad\angle{BDF}=\angle{CDE}\quad\mbox{and}\quad\angle{CED}=\angle{AEF}\mbox{.}\] Prove that $D$, $E$ and $F$ are the feet of the perpendiculars through $A$, $B$ and $C$ on $BC$, $CA$ and $AB$, respectively.
[i](Swiss Mathematical Olympiad 2011, Final round, problem 2)[/i]
2012 Hitotsubashi University Entrance Examination, 1
Given a triangle with $120^\circ$. Let $x,\ y,\ z$ be the side lengths of the triangle such that $x<y<z$.
(1) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=2$.
(2) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=3$.
(3) Let $a,\ b$ be non-negative integers. Express the number of $(x,\ y,\ z)$ such that $x+y-z=2^a3^b$ in terms of $a,\ b$.
2012 Hitotsubashi University entrance exam, problem 1