This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 239

1990 Kurschak Competition, 2

The incenter of $\triangle A_1A_2A_3$ is $I$, and the center of the $A_i$-excircle is $J_i$ ($i=1,2,3$). Let $B_i$ be the intersection point of side $A_{i+1}A_{i+2}$ and the bisector of $\angle A_{i+1}IA_{i+2}$ ($A_{i+3}:=A_i$ $\forall i$). Prove that the three lines $B_iJ_i$ are concurrent.

1987 AIME Problems, 9

Triangle $ABC$ has right angle at $B$, and contains a point $P$ for which $PA = 10$, $PB = 6$, and $\angle APB = \angle BPC = \angle CPA$. Find $PC$. [asy] pair A=(0,5), B=origin, C=(12,0), D=rotate(-60)*C, F=rotate(60)*A, P=intersectionpoint(A--D, C--F); draw(A--P--B--A--C--B^^C--P); dot(A^^B^^C^^P); pair point=P; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$P$", P, NE);[/asy]

2007 Moldova Team Selection Test, 2

If $I$ is the incenter of a triangle $ABC$ and $R$ is the radius of its circumcircle then \[AI+BI+CI\leq 3R\]

1999 AIME Problems, 14

Point $P$ is located inside traingle $ABC$ so that angles $PAB, PBC,$ and $PCA$ are all congruent. The sides of the triangle have lengths $AB=13, BC=14,$ and $CA=15,$ and the tangent of angle $PAB$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2014 AMC 12/AHSME, 10

Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length $1$. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles? $\textbf{(A) }\dfrac{\sqrt3}4\qquad \textbf{(B) }\dfrac{\sqrt3}3\qquad \textbf{(C) }\dfrac23\qquad \textbf{(D) }\dfrac{\sqrt2}2\qquad \textbf{(E) }\dfrac{\sqrt3}2$

1991 IMO Shortlist, 5

In the triangle $ ABC,$ with $ \angle A \equal{} 60 ^{\circ},$ a parallel $ IF$ to $ AC$ is drawn through the incenter $ I$ of the triangle, where $ F$ lies on the side $ AB.$ The point $ P$ on the side $ BC$ is such that $ 3BP \equal{} BC.$ Show that $ \angle BFP \equal{} \frac{\angle B}{2}.$

2010 Contests, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2009 Stanford Mathematics Tournament, 5

In the 2009 Stanford Olympics, Willy and Sammy are two bikers. The circular race track has two lanes, the inner lane with radius 11, and the outer with radius 12. Willy will start on the inner lane, and Sammy on the outer. They will race for one complete lap, measured by the inner track. What is the square of the distance between Willy and Sammy's starting positions so that they will both race the same distance? Assume that they are of point size and ride perfectly along their respective lanes

2007 IberoAmerican, 2

Let $ ABC$ be a triangle with incenter $ I$ and let $ \Gamma$ be a circle centered at $ I$, whose radius is greater than the inradius and does not pass through any vertex. Let $ X_{1}$ be the intersection point of $ \Gamma$ and line $ AB$, closer to $ B$; $ X_{2}$, $ X_{3}$ the points of intersection of $ \Gamma$ and line $ BC$, with $ X_{2}$ closer to $ B$; and let $ X_{4}$ be the point of intersection of $ \Gamma$ with line $ CA$ closer to $ C$. Let $ K$ be the intersection point of lines $ X_{1}X_{2}$ and $ X_{3}X_{4}$. Prove that $ AK$ bisects segment $ X_{2}X_{3}$.

2000 Brazil Team Selection Test, Problem 1

Consider a triangle $ABC$ and $I$ its incenter. The line $(AI)$ meets the circumcircle of $ABC$ in $D$. Let $E$ and $F$ be the orthogonal projections of $I$ on $(BD)$ and $(CD)$ respectively. Assume that $IE+IF=\frac{1}{2}AD$. Calculate $\angle{BAC}$. [color=red][Moderator edited: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=5088 .][/color]

2014 Baltic Way, 13

Let $ABCD$ be a square inscribed in a circle $\omega$ and let $P$ be a point on the shorter arc $AB$ of $\omega$. Let $CP\cap BD = R$ and $DP \cap AC = S.$ Show that triangles $ARB$ and $DSR$ have equal areas.

2014 Contests, 4

In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$. Prove that $P$, $Q$ and $R$ are collinear.

2006 Purple Comet Problems, 10

An equilateral triangle with side length $6$ has a square of side length $6$ attached to each of its edges as shown. The distance between the two farthest vertices of this figure (marked $A$ and $B$ in the figure) can be written as $m + \sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$. [asy] draw((0,0)--(1,0)--(1/2,sqrt(3)/2)--cycle); draw((1,0)--(1+sqrt(3)/2,1/2)--(1/2+sqrt(3)/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2)); draw((0,0)--(-sqrt(3)/2,1/2)--(-sqrt(3)/2+1/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2)); dot((-sqrt(3)/2+1/2,1/2+sqrt(3)/2)); label("A", (-sqrt(3)/2+1/2,1/2+sqrt(3)/2), N); draw((1,0)--(1,-1)--(0,-1)--(0,0)); dot((1,-1)); label("B", (1,-1), SE); [/asy]

2014 AMC 12/AHSME, 20

In $\triangle BAC$, $\angle BAC=40^\circ$, $AB=10$, and $AC=6$. Points $D$ and $E$ lie on $\overline{AB}$ and $\overline{AC}$ respectively. What is the minimum possible value of $BE+DE+CD$? $\textbf{(A) }6\sqrt 3+3\qquad \textbf{(B) }\dfrac{27}2\qquad \textbf{(C) }8\sqrt 3\qquad \textbf{(D) }14\qquad \textbf{(E) }3\sqrt 3+9\qquad$

2018 CMIMC Geometry, 3

Let $ABC$ be a triangle with side lengths $5$, $4\sqrt 2$, and $7$. What is the area of the triangle with side lengths $\sin A$, $\sin B$, and $\sin C$?

2007 AMC 12/AHSME, 6

Triangle $ ABC$ has side lengths $ AB \equal{} 5$, $ BC \equal{} 6$, and $ AC \equal{} 7$. Two bugs start simultaneously from $ A$ and crawl along the sides of the triangle in opposite directions at the same speed. They meet at point $ D$. What is $ BD$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

2010 AMC 10, 14

Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$? $ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$

2013 Princeton University Math Competition, 4

An equilateral triangle is given. A point lies on the incircle of this triangle. If the smallest two distances from the point to the sides of the triangle is $1$ and $4$, the sidelength of this equilateral triangle can be expressed as $\tfrac{a\sqrt b}c$ where $(a,c)=1$ and $b$ is not divisible by the square of an integer greater than $1$. Find $a+b+c$.

1998 AIME Problems, 12

Let $ABC$ be equilateral, and $D, E,$ and $F$ be the midpoints of $\overline{BC}, \overline{CA},$ and $\overline{AB},$ respectively. There exist points $P, Q,$ and $R$ on $\overline{DE}, \overline{EF},$ and $\overline{FD},$ respectively, with the property that $P$ is on $\overline{CQ}, Q$ is on $\overline{AR},$ and $R$ is on $\overline{BP}.$ The ratio of the area of triangle $ABC$ to the area of triangle $PQR$ is $a+b\sqrt{c},$ where $a, b$ and $c$ are integers, and $c$ is not divisible by the square of any prime. What is $a^{2}+b^{2}+c^{2}$?

1953 AMC 12/AHSME, 34

If one side of a triangle is $ 12$ inches and the opposite angle is $ 30$ degrees, then the diameter of the circumscribed circle is: $ \textbf{(A)}\ 18\text{ inches} \qquad\textbf{(B)}\ 30\text{ inches} \qquad\textbf{(C)}\ 24\text{ inches} \qquad\textbf{(D)}\ 20\text{ inches}\\ \textbf{(E)}\ \text{none of these}$

2010 Romanian Master of Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

1973 AMC 12/AHSME, 4

Two congruent $ 30^{\circ}$-$ 60^{\circ}$-$ 90^{\circ}$ are placed so that they overlap partly and their hypotenuses coincide. If the hypotenuse of each triangle is 12, the area common to both triangles is $ \textbf{(A)}\ 6\sqrt3 \qquad \textbf{(B)}\ 8\sqrt3 \qquad \textbf{(C)}\ 9\sqrt3 \qquad \textbf{(D)}\ 12\sqrt3 \qquad \textbf{(E)}\ 24$

2008 AMC 12/AHSME, 24

Triangle $ ABC$ has $ \angle C \equal{} 60^{\circ}$ and $ BC \equal{} 4$. Point $ D$ is the midpoint of $ BC$. What is the largest possible value of $ \tan{\angle BAD}$? $ \textbf{(A)} \ \frac {\sqrt {3}}{6} \qquad \textbf{(B)} \ \frac {\sqrt {3}}{3} \qquad \textbf{(C)} \ \frac {\sqrt {3}}{2\sqrt {2}} \qquad \textbf{(D)} \ \frac {\sqrt {3}}{4\sqrt {2} \minus{} 3} \qquad \textbf{(E)}\ 1$

2009 International Zhautykov Olympiad, 3

For a convex hexagon $ ABCDEF$ with an area $ S$, prove that: \[ AC\cdot(BD\plus{}BF\minus{}DF)\plus{}CE\cdot(BD\plus{}DF\minus{}BF)\plus{}AE\cdot(BF\plus{}DF\minus{}BD)\geq 2\sqrt{3}S \]

2014 PUMaC Geometry A, 4

Consider the cyclic quadrilateral with side lengths $1$, $4$, $8$, $7$ in that order. What is its circumdiameter? Let the answer be of the form $a\sqrt b+c$, for $b$ squarefree. Find $a+b+c$.