This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 239

1995 AMC 12/AHSME, 18

Two rays with common endpoint $O$ forms a $30^\circ$ angle. Point $A$ lies on one ray, point $B$ on the other ray, and $AB = 1$. The maximum possible length of $OB$ is $\textbf{(A)}\ 1 \qquad \textbf{(B)}\ \dfrac{1+\sqrt{3}}{\sqrt{2}} \qquad \textbf{(C)}\ \sqrt{3} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ \dfrac{4}{\sqrt{3}}$

2006 Kyiv Mathematical Festival, 4

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.

2010 AMC 12/AHSME, 8

Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$? $ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$

2014 AIME Problems, 12

Suppose that the angles of $\triangle ABC$ satisfy $\cos(3A) + \cos(3B) + \cos(3C) = 1$. Two sides of the triangle have lengths $10$ and $13$. There is a positive integer $m$ so that the maximum possible length for the remaining side of $\triangle ABC$ is $\sqrt{m}$. Find $m$.

2010 Romanian Masters In Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2013 AMC 12/AHSME, 24

Let $ABC$ be a triangle where $M$ is the midpoint of $\overline{AC}$, and $\overline{CN}$ is the angle bisector of $\angle ACB$ with $N$ on $\overline{AB}$. Let $X$ be the intersection of the median $\overline{BM}$ and the bisector $\overline{CN}$. In addition $\bigtriangleup BXN$ is equilateral and $AC=2$. What is $BN^2$? $\textbf{(A)}\ \frac{10-6\sqrt{2}}{7} \qquad\textbf{(B)}\ \frac{2}{9} \qquad\textbf{(C)}\ \frac{5\sqrt{2} - 3\sqrt{3}}{8} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{6} \qquad\textbf{(E)}\ \frac{3\sqrt{3} - 4}{5}$.

1990 AIME Problems, 12

A regular 12-gon is inscribed in a circle of radius 12. The sum of the lengths of all sides and diagonals of the 12-gon can be written in the form \[ a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6}, \] where $a$, $b$, $c$, and $d$ are positive integers. Find $a + b + c + d$.

1979 AMC 12/AHSME, 24

Sides $AB,~ BC,$ and $CD$ of (simple*) quadrilateral $ABCD$ have lengths $4,~ 5,$ and $20$, respectively. If vertex angles $B$ and $C$ are obtuse and $\sin C = - \cos B =\frac{3}{5} $, then side $AD$ has length $\textbf{(A) }24\qquad\textbf{(B) }24.5\qquad\textbf{(C) }24.6\qquad\textbf{(D) }24.8\qquad\textbf{(E) }25$ [size=70]*A polygon is called “simple” if it is not self intersecting.[/size]

2003 Bulgaria Team Selection Test, 5

Let $ABCD$ be a circumscribed quadrilateral and let $P$ be the orthogonal projection of its in center on $AC$. Prove that $\angle {APB}=\angle {APD}$

1987 AMC 12/AHSME, 30

In the figure, $\triangle ABC$ has $\angle A =45^{\circ}$ and $\angle B =30^{\circ}$. A line $DE$, with $D$ on $AB$ and $\angle ADE =60^{\circ}$, divides $\triangle ABC$ into two pieces of equal area. (Note: the figure may not be accurate; perhaps $E$ is on $CB$ instead of $AC$.) The ratio $\frac{AD}{AB}$ is [asy] size((220)); draw((0,0)--(20,0)--(7,6)--cycle); draw((6,6)--(10,-1)); label("A", (0,0), W); label("B", (20,0), E); label("C", (7,6), NE); label("D", (9.5,-1), W); label("E", (5.9, 6.1), SW); label("$45^{\circ}$", (2.5,.5)); label("$60^{\circ}$", (7.8,.5)); label("$30^{\circ}$", (16.5,.5)); [/asy] $ \textbf{(A)}\ \frac{1}{\sqrt{2}} \qquad\textbf{(B)}\ \frac{2}{2+\sqrt{2}} \qquad\textbf{(C)}\ \frac{1}{\sqrt{3}} \qquad\textbf{(D)}\ \frac{1}{\sqrt[3]{6}} \qquad\textbf{(E)}\ \frac{1}{\sqrt[4]{12}} $

1986 China National Olympiad, 2

In $\triangle ABC$, the length of altitude $AD$ is $12$, and the bisector $AE$ of $\angle A$ is $13$. Denote by $m$ the length of median $AF$. Find the range of $m$ when $\angle A$ is acute, orthogonal and obtuse respectively.

2013 Princeton University Math Competition, 2

An equilateral triangle is given. A point lies on the incircle of this triangle. If the smallest two distances from the point to the sides of the triangle is $1$ and $4$, the sidelength of this equilateral triangle can be expressed as $\tfrac{a\sqrt b}c$ where $(a,c)=1$ and $b$ is not divisible by the square of an integer greater than $1$. Find $a+b+c$.

2004 AIME Problems, 11

A right circular cone has a base with radius 600 and height $200\sqrt{7}$. A fly starts at a point on the surface of the cone whose distance from the vertex of the cone is 125, and crawls along the surface of the cone to a point on the exact opposite side of the cone whose distance from the vertex is $375\sqrt{2}$. Find the least distance that the fly could have crawled.

2013 AIME Problems, 9

A paper equilateral triangle $ABC$ has side length $12$. The paper triangle is folded so that vertex $A$ touches a point on side $\overline{BC}$ a distance $9$ from point $B$. The length of the line segment along which the triangle is folded can be written as $\frac{m\sqrt{p}}{n}$, where $m$, $n$, and $p$ are positive integers, $m$ and $n$ are relatively prime, and $p$ is not divisible by the square of any prime. Find $m+n+p$. [asy] import cse5; size(12cm); pen tpen = defaultpen + 1.337; real a = 39/5.0; real b = 39/7.0; pair B = MP("B", (0,0), dir(200)); pair A = MP("A", (9,0), dir(-80)); pair C = MP("C", (12,0), dir(-20)); pair K = (6,10.392); pair M = (a*B+(12-a)*K) / 12; pair N = (b*C+(12-b)*K) / 12; draw(B--M--N--C--cycle, tpen); draw(M--A--N--cycle); fill(M--A--N--cycle, mediumgrey); pair shift = (-20.13, 0); pair B1 = MP("B", B+shift, dir(200)); pair A1 = MP("A", K+shift, dir(90)); pair C1 = MP("C", C+shift, dir(-20)); draw(A1--B1--C1--cycle, tpen);[/asy]

2003 All-Russian Olympiad, 2

Two circles $S_1$ and $S_2$ with centers $O_1$ and $O_2$ respectively intersect at $A$ and $B$. The tangents at $A$ to $S_1$ and $S_2$ meet segments $BO_2$ and $BO_1$ at $K$ and $L$ respectively. Show that $KL \parallel O_1O_2.$

2014 Contests, 2

Let $ AB$ be the diameter of semicircle $O$ , $C, D $ be points on the arc $AB$, $P, Q$ be respectively the circumcenter of $\triangle OAC $ and $\triangle OBD $ . Prove that:$CP\cdot CQ=DP \cdot DQ$.[asy] import cse5; import olympiad; unitsize(3.5cm); dotfactor=4; pathpen=black; real h=sqrt(55/64); pair A=(-1,0), O=origin, B=(1,0),C=shift(-3/8,h)*O,D=shift(4/5,3/5)*O,P=circumcenter(O,A,C), Q=circumcenter(O,D,B); D(arc(O,1,0,180),darkgreen); D(MP("A",A,W)--MP("C",C,N)--MP("P",P,SE)--MP("D",D,E)--MP("Q",Q,E)--C--MP("O",O,S)--D--MP("B",B,E)--cycle,deepblue); D(O); [/asy]

2006 AMC 12/AHSME, 17

Square $ ABCD$ has side length $ s$, a circle centered at $ E$ has radius $ r$, and $ r$ and $ s$ are both rational. The circle passes through $ D$, and $ D$ lies on $ \overline{BE}$. Point $ F$ lies on the circle, on the same side of $ \overline{BE}$ as $ A$. Segment $ AF$ is tangent to the circle, and $ AF \equal{} \sqrt {9 \plus{} 5\sqrt {2}}$. What is $ r/s$? [asy]unitsize(6mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=3; pair B=(0,0), C=(3,0), D=(3,3), A=(0,3); pair Ep=(3+5*sqrt(2)/6,3+5*sqrt(2)/6); pair F=intersectionpoints(Circle(A,sqrt(9+5*sqrt(2))),Circle(Ep,5/3))[0]; pair[] dots={A,B,C,D,Ep,F}; draw(A--F); draw(Circle(Ep,5/3)); draw(A--B--C--D--cycle); dot(dots); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,SW); label("$E$",Ep,E); label("$F$",F,NW);[/asy]$ \textbf{(A) } \frac {1}{2}\qquad \textbf{(B) } \frac {5}{9}\qquad \textbf{(C) } \frac {3}{5}\qquad \textbf{(D) } \frac {5}{3}\qquad \textbf{(E) } \frac {9}{5}$

2001 India National Olympiad, 5

$ABC$ is a triangle. $M$ is the midpoint of $BC$. $\angle MAB = \angle C$, and $\angle MAC = 15^{\circ}$. Show that $\angle AMC$ is obtuse. If $O$ is the circumcenter of $ADC$, show that $AOD$ is equilateral.

1996 IMO Shortlist, 7

Let $ABC$ be an acute triangle with circumcenter $O$ and circumradius $R$. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$ at $B'$ and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA'\cdot OB'\cdot OC'\geq 8R^{3}.\] Sorry if this has been posted before since this is a very classical problem, but I failed to find it with the search-function.

1998 Canada National Olympiad, 4

Let $ABC$ be a triangle with $\angle{BAC} = 40^{\circ}$ and $\angle{ABC}=60^{\circ}$. Let $D$ and $E$ be the points lying on the sides $AC$ and $AB$, respectively, such that $\angle{CBD} = 40^{\circ}$ and $\angle{BCE} = 70^{\circ}$. Let $F$ be the point of intersection of the lines $BD$ and $CE$. Show that the line $AF$ is perpendicular to the line $BC$.

2000 USA Team Selection Test, 6

Let $ ABC$ be a triangle inscribed in a circle of radius $ R$, and let $ P$ be a point in the interior of triangle $ ABC$. Prove that \[ \frac {PA}{BC^{2}} \plus{} \frac {PB}{CA^{2}} \plus{} \frac {PC}{AB^{2}}\ge \frac {1}{R}. \] [i]Alternative formulation:[/i] If $ ABC$ is a triangle with sidelengths $ BC\equal{}a$, $ CA\equal{}b$, $ AB\equal{}c$ and circumradius $ R$, and $ P$ is a point inside the triangle $ ABC$, then prove that $ \frac {PA}{a^{2}} \plus{} \frac {PB}{b^{2}} \plus{} \frac {PC}{c^{2}}\ge \frac {1}{R}$.

1996 AMC 12/AHSME, 30

A hexagon inscribed in a circle has three consecutive sides each of length $3$ and three consecutive sides each of length $5$. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length $3$ and the other with three sides each of length $5$, has length equal to $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. $\text{(A)}\ 309 \qquad \text{(B)}\ 349 \qquad \text{(C)}\ 369 \qquad \text{(D)}\ 389\qquad \text{(E)}\ 409$

2000 AMC 12/AHSME, 17

A circle centered at $ O$ has radius $ 1$ and contains the point $ A$. Segment $ AB$ is tangent to the circle at $ A$ and $ \angle{AOB} \equal{} \theta$. If point $ C$ lies on $ \overline{OA}$ and $ \overline{BC}$ bisects $ \angle{ABO}$, then $ OC \equal{}$ [asy]import olympiad; unitsize(2cm); defaultpen(fontsize(8pt)+linewidth(.8pt)); labelmargin=0.2; dotfactor=3; pair O=(0,0); pair A=(1,0); pair B=(1,1.5); pair D=bisectorpoint(A,B,O); pair C=extension(B,D,O,A); draw(Circle(O,1)); draw(O--A--B--cycle); draw(B--C); label("$O$",O,SW); dot(O); label("$\theta$",(0.1,0.05),ENE); dot(C); label("$C$",C,S); dot(A); label("$A$",A,E); dot(B); label("$B$",B,E);[/asy] $ \textbf{(A)}\ \sec^2\theta \minus{} \tan\theta \qquad \textbf{(B)}\ \frac {1}{2} \qquad \textbf{(C)}\ \frac {\cos^2\theta}{1 \plus{} \sin\theta} \qquad \textbf{(D)}\ \frac {1}{1 \plus{} \sin\theta} \qquad \textbf{(E)}\ \frac {\sin\theta}{\cos^2\theta}$

2014 Harvard-MIT Mathematics Tournament, 6

In quadrilateral $ABCD$, we have $AB = 5$, $BC = 6$, $CD = 5$, $DA = 4$, and $\angle ABC = 90^\circ$. Let $AC$ and $BD$ meet at $E$. Compute $\dfrac{BE}{ED}$.

1983 AIME Problems, 4

A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is 6 cm, and that of $BC$ is 2 cm. The angle $ABC$ is a right angle. Find the square of the distance (in centimeters) from $B$ to the center of the circle. [asy] size(150); defaultpen(linewidth(0.65)+fontsize(11)); real r=10; pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r),C; path P=circle(O,r); C=intersectionpoint(B--(B.x+r,B.y),P); draw(Arc(O, r, 45, 360-17.0312)); draw(A--B--C);dot(A); dot(B); dot(C); label("$A$",A,NE); label("$B$",B,SW); label("$C$",C,SE); [/asy]