This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2009 AIME Problems, 15

Let $ \overline{MN}$ be a diameter of a circle with diameter $ 1$. Let $ A$ and $ B$ be points on one of the semicircular arcs determined by $ \overline{MN}$ such that $ A$ is the midpoint of the semicircle and $ MB\equal{}\frac35$. Point $ C$ lies on the other semicircular arc. Let $ d$ be the length of the line segment whose endpoints are the intersections of diameter $ \overline{MN}$ with the chords $ \overline{AC}$ and $ \overline{BC}$. The largest possible value of $ d$ can be written in the form $ r\minus{}s\sqrt{t}$, where $ r$, $ s$, and $ t$ are positive integers and $ t$ is not divisible by the square of any prime. Find $ r\plus{}s\plus{}t$.

PEN F Problems, 12

Does there exist a circle and an infinite set of points on it such that the distance between any two points of the set is rational?

2009 Tournament Of Towns, 4

A point is chosen on each side of a regular $2009$-gon. Let $S$ be the area of the $2009$-gon with vertices at these points. For each of the chosen points, reflect it across the midpoint of its side. Prove that the $2009$-gon with vertices at the images of these reflections also has area $S.$ [i](4 points)[/i]

2014 Math Prize For Girls Problems, 8

A triangle has sides of length $\sqrt{13}$, $\sqrt{17}$, and $2 \sqrt{5}$. Compute the area of the triangle.

1963 Putnam, A5

i) Prove that if a function $f$ is continuous on the closed interval $[0, \pi]$ and $$ \int_{0}^{\pi} f(t) \cos t \; dt= \int_{0}^{\pi} f(t) \sin t \; dt=0,$$ then there exist points $0 < \alpha < \beta < \pi$ such that $f(\alpha) =f(\beta) =0.$ ii) Let $R$ be a bounded, convex, and open region in the Euclidean plane. Prove with the help of i) that the centroid of $R$ bisects at least three different chords of the boundary of $ R.$

1992 IMO Longlists, 67

In a triangle, a symmedian is a line through a vertex that is symmetric to the median with the respect to the internal bisector (all relative to the same vertex). In the triangle $ABC$, the median $m_a$ meets $BC$ at $A'$ and the circumcircle again at $A_1$. The symmedian $s_a$ meets $BC$ at $M$ and the circumcircle again at $A_2$. Given that the line $A_1A_2$ contains the circumcenter $O$ of the triangle, prove that: [i](a) [/i]$\frac{AA'}{AM} = \frac{b^2+c^2}{2bc} ;$ [i](b) [/i]$1+4b^2c^2 = a^2(b^2+c^2)$

1975 IMO, 3

In the plane of a triangle $ABC,$ in its exterior$,$ we draw the triangles $ABR, BCP, CAQ$ so that $\angle PBC = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle QCA = 30^{\circ}$, $\angle ABR = \angle RAB = 15^{\circ}$. Prove that [b]a.)[/b] $\angle QRP = 90\,^{\circ},$ and [b]b.)[/b] $QR = RP.$

2007 Today's Calculation Of Integral, 233

Find the minimum value of the following definite integral. $ \int_0^{\pi} (a\sin x \plus{} b\sin 3x \minus{} 1)^2\ dx.$

1978 IMO Longlists, 6

Prove that for all $X > 1$, there exists a triangle whose sides have lengths $P_1(X) = X^4+X^3+2X^2+X+1, P_2(X) = 2X^3+X^2+2X+1$, and $P_3(X) = X^4-1$. Prove that all these triangles have the same greatest angle and calculate it.

1994 Hong Kong TST, 1

In a $\triangle ABC$, $\angle C=2 \angle B$. $P$ is a point in the interior of $\triangle ABC$ satisfying that $AP=AC$ and $PB=PC$. Show that $AP$ trisects the angle $\angle A$.

Today's calculation of integrals, 900

Find $\sum_{k=0}^n \frac{(-1)^k}{2k+1}\ _n C_k.$

2009 Today's Calculation Of Integral, 435

Evaluate $ \int_{\frac{\pi}{4}}^{\frac {\pi}{2}} \frac {1}{(\sin x \plus{} \cos x \plus{} 2\sqrt {\sin x\cos x})\sqrt {\sin x\cos x}}dx$.

2011 AIME Problems, 10

A circle with center $O$ has radius 25. Chord $\overline{AB}$ of length 30 and chord $\overline{CD}$ of length 14 intersect at point $P$. The distance between the midpoints of the two chords is 12. The quantity $OP^2$ can be represented as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find the remainder where $m+n$ is divided by 1000.

2013 Sharygin Geometry Olympiad, 6

The altitudes $AA_1, BB_1, CC_1$ of an acute triangle $ABC$ concur at $H$. The perpendicular lines from $H$ to $B_1C_1, A_1C_1$ meet rays $CA, CB$ at $P, Q$ respectively. Prove that the line from $C$ perpendicular to $A_1B_1$ passes through the midpoint of $PQ$.

2007 Today's Calculation Of Integral, 227

Evaluate $ \frac{1}{\displaystyle \int _0^{\frac{\pi}{2}} \cos ^{2006}x \cdot \sin 2008 x\ dx}$

2000 Baltic Way, 20

For every positive integer $n$, let \[x_n=\frac{(2n+1)(2n+3)\cdots (4n-1)(4n+1)}{(2n)(2n+2)\cdots (4n-2)(4n)}\] Prove that $\frac{1}{4n}<x_n-\sqrt{2}<\frac{2}{n}$.

1998 Belarus Team Selection Test, 4

The altitudes through the vertices $ A,B,C$ of an acute-angled triangle $ ABC$ meet the opposite sides at $ D,E, F,$ respectively. The line through $ D$ parallel to $ EF$ meets the lines $ AC$ and $ AB$ at $ Q$ and $ R,$ respectively. The line $ EF$ meets $ BC$ at $ P.$ Prove that the circumcircle of the triangle $ PQR$ passes through the midpoint of $ BC.$

1983 IMO Longlists, 8

On the sides of the triangle $ABC$, three similar isosceles triangles $ABP \ (AP = PB)$, $AQC \ (AQ = QC)$, and $BRC \ (BR = RC)$ are constructed. The first two are constructed externally to the triangle $ABC$, but the third is placed in the same half-plane determined by the line $BC$ as the triangle $ABC$. Prove that $APRQ$ is a parallelogram.

2006 Iran MO (3rd Round), 3

In triangle $ABC$, if $L,M,N$ are midpoints of $AB,AC,BC$. And $H$ is orthogonal center of triangle $ABC$, then prove that \[LH^{2}+MH^{2}+NH^{2}\leq\frac14(AB^{2}+AC^{2}+BC^{2})\]

2009 Indonesia TST, 4

Given triangle $ ABC$. Let the tangent lines of the circumcircle of $ AB$ at $ B$ and $ C$ meet at $ A_0$. Define $ B_0$ and $ C_0$ similarly. a) Prove that $ AA_0,BB_0,CC_0$ are concurrent. b) Let $ K$ be the point of concurrency. Prove that $ KG\parallel BC$ if and only if $ 2a^2\equal{}b^2\plus{}c^2$.

1988 IMO Longlists, 27

Assuming that the roots of $x^3 + p \cdot x^2 + q \cdot x + r = 0$ are real and positive, find a relation between $p,q$ and $r$ which gives a necessary condition for the roots to be exactly the cosines of the three angles of a triangle.

1984 AMC 12/AHSME, 30

For any complex number $w = a + bi$, $|w|$ is defined to be the real number $\sqrt{a^2 + b^2}$. If $w = \cos{40^\circ} + i\sin{40^\circ}$, then \[ |w + 2w^2 + 3w^3 + \cdots + 9w^9|^{-1} \] equals $\textbf{(A)}\ \frac{1}{9}\sin{40^\circ} \qquad \textbf{(B)}\ \frac{2}{9}\sin{20^\circ} \qquad \textbf{(C)}\ \frac{1}{9}\cos{40^\circ} \qquad \textbf{(D)}\ \frac{1}{18}\cos{20^\circ} \qquad \textbf{(E)}\text{ none of these}$

1949 Kurschak Competition, 1

Prove that $\sin x + \frac12 \sin 2x + \frac13 \sin 3x > 0$ for $0 < x < 180^o$.

1993 AMC 12/AHSME, 27

The sides of $\triangle ABC$ have lengths $6, 8$ and $10$. A circle with center $P$ and radius $1$ rolls around the inside of $\triangle ABC$, always remaining tangent to at least one side of the triangle. When $P$ first returns to its original position, through what distance has $P$ traveled? [asy] draw((0,0)--(8,0)--(8,6)--(0,0)); draw(Circle((4.5,1),1)); draw((4.5,2.5)..(5.55,2.05)..(6,1), EndArrow); dot((0,0)); dot((8,0)); dot((8,6)); dot((4.5,1)); label("A", (0,0), SW); label("B", (8,0), SE); label("C", (8,6), NE); label("8", (4,0), S); label("6", (8,3), E); label("10", (4,3), NW); label("P", (4.5,1), NW); [/asy] $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 14 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 17 $

1987 Balkan MO, 3

In the triangle $ABC$ the following equality holds: \[\sin^{23}{\frac{A}{2}}\cos^{48}{\frac{B}{2}}=\sin^{23}{\frac{B}{2}}\cos^{48}{\frac{A}{2}}\] Determine the value of $\frac{AC}{BC}$.