Found problems: 3349
2003 Purple Comet Problems, 17
Given that $3 \sin x + 4 \cos x = 5$, where $x$ is in $(0, \frac{\pi}{2})$ , find $2 \sin x + \cos x + 4 \tan x$.
2008 China Team Selection Test, 3
Find all positive integers $ n$ having the following properties:in two-dimensional Cartesian coordinates, there exists a convex $ n$ lattice polygon whose lengths of all sides are odd numbers, and unequal to each other. (where lattice polygon is defined as polygon whose coordinates of all vertices are integers in Cartesian coordinates.)
2006 Germany Team Selection Test, 2
Let $A_{1}$, $B_{1}$, $C_{1}$ be the feet of the altitudes of an acute-angled triangle $ABC$ issuing from the vertices $A$, $B$, $C$, respectively. Let $K$ and $M$ be points on the segments $A_{1}C_{1}$ and $B_{1}C_{1}$, respectively, such that $\measuredangle KAM = \measuredangle A_{1}AC$. Prove that the line $AK$ is the angle bisector of the angle $C_{1}KM$.
2010 Princeton University Math Competition, 4
In regular hexagon $ABCDEF$, $AC$, $CE$ are two diagonals. Points $M$, $N$ are on $AC$, $CE$ respectively and satisfy $AC: AM = CE: CN = r$. Suppose $B, M, N$ are collinear, find $100r^2$.
[asy]
size(120); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(pair P) {
dot(P,linewidth(3)); return P;
}
pair A=dir(0), B=dir(60), C=dir(120), D=dir(180), E=dir(240), F=dir(300), N=(4*E+C)/5,M=intersectionpoints(A--C,B--N)[0];
draw(A--B--C--D--E--F--cycle); draw(A--C--E); draw(B--N);
label("$A$",D2(A),plain.E);
label("$B$",D2(B),NE);
label("$C$",D2(C),NW);
label("$D$",D2(D),W);
label("$E$",D2(E),SW);
label("$F$",D2(F),SE);
label("$M$",D2(M),(0,-1.5));
label("$N$",D2(N),SE);
[/asy]
2003 AMC 12-AHSME, 16
Three semicircles of radius $ 1$ are constructed on diameter $ AB$ of a semicircle of radius $ 2$. The centers of the small semicircles divide $ \overline{AB}$ into four line segments of equal length, as shown. What is the area of the shaded region that lies within the large semicircle but outside the smaller semicircles?
[asy]import graph;
unitsize(14mm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
dashed=linetype("4 4");
dotfactor=3;
pair A=(-2,0), B=(2,0);
fill(Arc((0,0),2,0,180)--cycle,mediumgray);
fill(Arc((-1,0),1,0,180)--cycle,white);
fill(Arc((0,0),1,0,180)--cycle,white);
fill(Arc((1,0),1,0,180)--cycle,white);
draw(Arc((-1,0),1,60,180));
draw(Arc((0,0),1,0,60),dashed);
draw(Arc((0,0),1,60,120));
draw(Arc((0,0),1,120,180),dashed);
draw(Arc((1,0),1,0,120));
draw(Arc((0,0),2,0,180)--cycle);
dot((0,0));
dot((-1,0));
dot((1,0));
draw((-2,-0.1)--(-2,-0.3),gray);
draw((-1,-0.1)--(-1,-0.3),gray);
draw((1,-0.1)--(1,-0.3),gray);
draw((2,-0.1)--(2,-0.3),gray);
label("$A$",A,W);
label("$B$",B,E);
label("1",(-1.5,-0.1),S);
label("2",(0,-0.1),S);
label("1",(1.5,-0.1),S);[/asy]$ \textbf{(A)}\ \pi\minus{}\sqrt3 \qquad
\textbf{(B)}\ \pi\minus{}\sqrt2 \qquad
\textbf{(C)}\ \frac{\pi\plus{}\sqrt2}{2} \qquad
\textbf{(D)}\ \frac{\pi\plus{}\sqrt3}{2}$
$ \textbf{(E)}\ \frac{7}{6}\pi\minus{}\frac{\sqrt3}{2}$
2005 Iran MO (3rd Round), 4
Suppose in triangle $ABC$ incircle touches the side $BC$ at $P$ and $\angle APB=\alpha$. Prove that : \[\frac1{p-b}+\frac1{p-c}=\frac2{rtg\alpha}\]
2009 CHKMO, 3
$ \Delta ABC$ is a triangle such that $ AB \neq AC$. The incircle of $ \Delta ABC$ touches $ BC, CA, AB$ at $ D, E, F$ respectively. $ H$ is a point on the segment $ EF$ such that $ DH \bot EF$. Suppose $ AH \bot BC$, prove that $ H$ is the orthocentre of $ \Delta ABC$.
Remark: the original question has missed the condition $ AB \neq AC$
2019 Jozsef Wildt International Math Competition, W. 10
If ${si}(x) =- \int \limits_{x}^{\infty}\left(\frac{\sin t}{t}\right)dt; x>0$ then $$\int \limits_{e}^{e^2} \left(\frac{1}{x}\left(si\left(e^4x\right)-si\left(e^3x\right)\right)\right)\,dx=\int \limits_{3}^{e^4} \left(\frac{1}{x}\left(\operatorname{si}\left(e^2x\right)-si\left(ex\right)\right)\right)dx$$
2013 Math Prize For Girls Problems, 15
Let $\triangle ABC$ be a triangle with $AB = 7$, $BC = 8$, and $AC = 9$. Point $D$ is on side $\overline{AC}$ such that $\angle CBD$ has measure $45^\circ$. What is the length of $\overline{BD}$?
2009 Today's Calculation Of Integral, 508
Compare the size of the definite integrals?
\[ \int_0^{\frac {\pi}{4}} x^{2008}\tan ^{2008}x\ dx,\ \int_0^{\frac {\pi}{4}} x^{2009}\tan ^{2009}x\ dx,\ \int_0^{\frac {\pi}{4}} x^{2010}\tan ^{2010}x\ dx\]
2011 Today's Calculation Of Integral, 738
Answer the following questions:
(1) Find the value of $a$ for which $S=\int_{-\pi}^{\pi} (x-a\sin 3x)^2dx$ is minimized, then find the minimum value.
(2) Find the vlues of $p,\ q$ for which $T=\int_{-\pi}^{\pi} (\sin 3x-px-qx^2)^2dx$ is minimized, then find the minimum value.
2002 USA Team Selection Test, 5
Consider the family of nonisosceles triangles $ABC$ satisfying the property $AC^2 + BC^2 = 2 AB^2$. Points $M$ and $D$ lie on side $AB$ such that $AM = BM$ and $\angle ACD = \angle BCD$. Point $E$ is in the plane such that $D$ is the incenter of triangle $CEM$. Prove that exactly one of the ratios
\[ \frac{CE}{EM}, \quad \frac{EM}{MC}, \quad \frac{MC}{CE} \]
is constant.
2002 All-Russian Olympiad, 3
Prove that if $0<x<\frac{\pi}{2}$ and $n>m$, where $n$,$m$ are natural numbers, \[ 2 \left| \sin^n x - \cos^n x \right| \le 3 \left| \sin^m x - \cos^m x \right|.\]
2001 Vietnam National Olympiad, 3
For real $a, b$ define the sequence $x_{0}, x_{1}, x_{2}, ...$ by $x_{0}= a, x_{n+1}= x_{n}+b \sin x_{n}$. If $b = 1$, show that the sequence converges to a finite limit for all $a$. If $b > 2$, show that the sequence diverges for some $a$.
1971 Czech and Slovak Olympiad III A, 4
Show that there are real numbers $A,B$ such that the identity \[\sum_{k=1}^n\tan(k)\tan(k-1)=A\tan(n)+Bn\] holds for every positive integer $n.$
2005 Today's Calculation Of Integral, 1
Calculate the following indefinite integral.
[1] $\int \frac{e^{2x}}{(e^x+1)^2}dx$
[2] $\int \sin x\cos 3x dx$
[3] $\int \sin 2x\sin 3x dx$
[4] $\int \frac{dx}{4x^2-12x+9}$
[5] $\int \cos ^4 x dx$
2023 Romania National Olympiad, 2
Determine the largest natural number $k$ such that there exists a natural number $n$ satisfying:
\[
\sin(n + 1) < \sin(n + 2) < \sin(n + 3) < \ldots < \sin(n + k).
\]
2004 France Team Selection Test, 2
Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively.
Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.
JBMO Geometry Collection, 2002
The triangle $ABC$ has $CA = CB$. $P$ is a point on the circumcircle between $A$ and $B$ (and on the opposite side of the line $AB$ to $C$). $D$ is the foot of the perpendicular from $C$ to $PB$. Show that $PA + PB = 2 \cdot PD$.
2011 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle and let $BB_1,CC_1$ be respectively the bisectors of $\angle{B},\angle{C}$ with $B_1$ on $AC$ and $C_1$ on $AB$, Let $E,F$ be the feet of perpendiculars drawn from $A$ onto $BB_1,CC_1$ respectively. Suppose $D$ is the point at which the incircle of $ABC$ touches $AB$. Prove that $AD=EF$
2006 Kyiv Mathematical Festival, 3
See all the problems from 5-th Kyiv math festival
[url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url]
Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.
2005 Croatia National Olympiad, 4
The circumradius $R$ of a triangle with side lengths $a, b, c$ satisfies $R =\frac{a\sqrt{bc}}{b+c}$. Find the angles of the triangle.
2020 India National Olympiad, 5
Infinitely many equidistant parallel lines are drawn in the plane. A positive integer $n \geqslant 3$ is called frameable if it is possible to draw a regular polygon with $n$ sides all whose vertices lie on these lines, and no line contains more than one vertex of the polygon.
(a) Show that $3, 4, 6$ are frameable.
(b) Show that any integer $n \geqslant 7$ is not frameable.
(c) Determine whether $5$ is frameable.
[i]Proposed by Muralidharan[/i]
2006 China Western Mathematical Olympiad, 3
Let $k$ be a positive integer not less than 3 and $x$ a real number. Prove that if $\cos (k-1)x$ and $\cos kx$ are rational, then there exists a positive integer $n>k$, such that both $\cos (n-1)x$ and $\cos nx$ are rational.
2009 Purple Comet Problems, 16
Let the complex number $z = \cos\tfrac{1}{1000} + i \sin\tfrac{1}{1000}.$ Find the smallest positive integer $n$ so that $z^n$ has an imaginary part which exceeds $\tfrac{1}{2}.$