Found problems: 560
2004 Romania Team Selection Test, 11
Let $I$ be the incenter of the non-isosceles triangle $ABC$ and let $A',B',C'$ be the tangency points of the incircle with the sides $BC,CA,AB$ respectively. The lines $AA'$ and $BB'$ intersect in $P$, the lines $AC$ and $A'C'$ in $M$ and the lines $B'C'$ and $BC$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.
[i]Alternative formulation.[/i] The incircle of a non-isosceles triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$ and $AB$ in $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$, respectively. The lines $AA^{\prime}$ and $BB^{\prime}$ intersect in $P$, the lines $AC$ and $A^{\prime}C^{\prime}$ intersect in $M$, and the lines $BC$ and $B^{\prime}C^{\prime}$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.
1982 Tournament Of Towns, (030) 4
(a) $K_1,K_2,..., K_n$ are the feet of the perpendiculars from an arbitrary point $M$ inside a given regular $n$-gon to its sides (or sides produced). Prove that the sum $\overrightarrow{MK_1} + \overrightarrow{MK_2} + ... + \overrightarrow{MK_n}$ equals $\frac{n}{2}\overrightarrow{MO}$, where $O$ is the centre of the $n$-gon.
(b) Prove that the sum of the vectors whose origin is an arbitrary point $M$ inside a given regular tetrahedron and whose endpoints are the feet of the perpendiculars from $M$ to the faces of the tetrahedron equals $\frac43 \overrightarrow{MO}$, where $O$ is the centre of the tetrahedron.
(VV Prasolov, Moscow)
1979 Miklós Schweitzer, 7
Let $ T$ be a triangulation of an $ n$-dimensional sphere, and to each vertex of $ T$ let us assign a nonzero vector of a linear space $ V$. Show that if $ T$ has an $ n$-dimensional simplex such that the vectors assigned to the vertices of this simplex are linearly independent, then another such simplex must also exist.
[i]L. Lovasz[/i]
2008 AMC 10, 21
A cube with side length $ 1$ is sliced by a plane that passes through two diagonally opposite vertices $ A$ and $ C$ and the midpoints $ B$ and $ D$ of two opposite edges not containing $ A$ and $ C$, ac shown. What is the area of quadrilateral $ ABCD$?
[asy]import three;
size(200);
defaultpen(fontsize(8)+linewidth(0.7));
currentprojection=obliqueX;
dotfactor=4;
draw((0.5,0,0)--(0,0,0)--(0,0,1)--(0,0,0)--(0,1,0),linetype("4 4"));
draw((0.5,0,1)--(0,0,1)--(0,1,1)--(0.5,1,1)--(0.5,0,1)--(0.5,0,0)--(0.5,1,0)--(0.5,1,1));
draw((0.5,1,0)--(0,1,0)--(0,1,1));
dot((0.5,0,0));
label("$A$",(0.5,0,0),WSW);
dot((0,1,1));
label("$C$",(0,1,1),NE);
dot((0.5,1,0.5));
label("$D$",(0.5,1,0.5),ESE);
dot((0,0,0.5));
label("$B$",(0,0,0.5),NW);[/asy]$ \textbf{(A)}\ \frac {\sqrt6}{2} \qquad \textbf{(B)}\ \frac {5}{4} \qquad \textbf{(C)}\ \sqrt2 \qquad \textbf{(D)}\ \frac {3}{2} \qquad \textbf{(E)}\ \sqrt3$
2006 Poland - Second Round, 3
Given is a prime number $p$ and natural $n$ such that $p \geq n \geq 3$. Set $A$ is made of sequences of lenght $n$ with elements from the set $\{0,1,2,...,p-1\}$ and have the following property:
For arbitrary two sequence $(x_1,...,x_n)$ and $(y_1,...,y_n)$ from the set $A$ there exist three different numbers $k,l,m$ such that:
$x_k \not = y_k$, $x_l \not = y_l$, $x_m \not = y_m$.
Find the largest possible cardinality of $A$.
2011 Romanian Master of Mathematics, 5
For every $n\geq 3$, determine all the configurations of $n$ distinct points $X_1,X_2,\ldots,X_n$ in the plane, with the property that for any pair of distinct points $X_i$, $X_j$ there exists a permutation $\sigma$ of the integers $\{1,\ldots,n\}$, such that $\textrm{d}(X_i,X_k) = \textrm{d}(X_j,X_{\sigma(k)})$ for all $1\leq k \leq n$.
(We write $\textrm{d}(X,Y)$ to denote the distance between points $X$ and $Y$.)
[i](United Kingdom) Luke Betts[/i]
1980 Poland - Second Round, 1
Students $ A $ and $ B $ play according to the following rules: student $ A $ selects a vector $ \overrightarrow{a_1} $ of length 1 in the plane, then student $ B $ gives the number $ s_1 $, equal to $ 1 $ or $ - $1; then the student $ A $ chooses a vector $ \overrightarrow{a_1} $ of length $ 1 $, and in turn the student $ B $ gives a number $ s_2 $ equal to $ 1 $ or $ -1 $ etc. $ B $ wins if for a certain $ n $ vector $ \sum_{j=1}^n \varepsilon_j \overrightarrow{a_j} $ has a length greater than the number $ R $ determined before the start of the game. Prove that student $B$ can achieve a win in no more than $R^2 + 1$ steps regardless of partner $A$'s actions.
2007 Romania National Olympiad, 3
Let $n\geq 1$ be an integer. Find all rings $(A,+,\cdot)$ such that all $x\in A\setminus\{0\}$ satisfy $x^{2^{n}+1}=1$.
1988 IMO Longlists, 11
Let $ u_1, u_2, \ldots, u_m$ be $ m$ vectors in the plane, each of length $ \leq 1,$ with zero sum. Show that one can arrange $ u_1, u_2, \ldots, u_m$ as a sequence $ v_1, v_2, \ldots, v_m$ such that each partial sum $ v_1, v_1 \plus{} v_2, v_1 \plus{} v_2 \plus{} v_3, \ldots, v_1, v_2, \ldots, v_m$ has length less than or equal to $ \sqrt {5}.$
1986 China Team Selection Test, 2
Let $ a_1$, $ a_2$, ..., $ a_n$ and $ b_1$, $ b_2$, ..., $ b_n$ be $ 2 \cdot n$ real numbers. Prove that the following two statements are equivalent:
[b]i)[/b] For any $ n$ real numbers $ x_1$, $ x_2$, ..., $ x_n$ satisfying $ x_1 \leq x_2 \leq \ldots \leq x_ n$, we have $ \sum^{n}_{k \equal{} 1} a_k \cdot x_k \leq \sum^{n}_{k \equal{} 1} b_k \cdot x_k,$
[b]ii)[/b] We have $ \sum^{s}_{k \equal{} 1} a_k \leq \sum^{s}_{k \equal{} 1} b_k$ for every $ s\in\left\{1,2,...,n\minus{}1\right\}$ and $ \sum^{n}_{k \equal{} 1} a_k \equal{} \sum^{n}_{k \equal{} 1} b_k$.
1996 Balkan MO, 3
In a convex pentagon $ABCDE$, the points $M$, $N$, $P$, $Q$, $R$ are the midpoints of the sides $AB$, $BC$, $CD$, $DE$, $EA$, respectively. If the segments $AP$, $BQ$, $CR$ and $DM$ pass through a single point, prove that $EN$ contains that point as well.
[i]Yugoslavia[/i]
1983 Polish MO Finals, 5
On the plane are given unit vectors $\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$. Show that one can choose numbers $c_1,c_2,c_3 \in \{-1,1\}$ such that the length of the vector $c_1\overrightarrow{a_1}+c_2\overrightarrow{a_2}+c_3\overrightarrow{a_3}$ is at least $2$.
2008 Iran Team Selection Test, 4
Let $ P_1,P_2,P_3,P_4$ be points on the unit sphere. Prove that $ \sum_{i\neq j}\frac1{|P_i\minus{}P_j|}$ takes its minimum value if and only if these four points are vertices of a regular pyramid.
2007 Princeton University Math Competition, 7
Given two sequences $x_n$ and $y_n$ defined by $x_0 = y_0 = 7$,
\[x_n = 4x_{n-1}+3y_{n-1}, \text{ and}\]\[y_n = 3y_{n-1}+2x_{n-1},\]
find $\lim_{n \to \infty} \frac{x_n}{y_n}$.
2009 Putnam, B1
Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example, $ \frac{10}9\equal{}\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!}.$
2014 IMS, 3
Let $R$ be a commutative ring with $1$ such that the number of elements of $R$ is equal to $p^3$ where $p$ is a prime number. Prove that if the number of elements of $\text{zd}(R)$ be in the form of $p^n$ ($n \in \mathbb{N^*}$) where $\text{zd}(R) = \{a \in R \mid \exists 0 \neq b \in R, ab = 0\}$, then $R$ has exactly one maximal ideal.
2011 AIME Problems, 13
A cube with side length 10 is suspended above a plane. The vertex closest to the plane is labelled $A$. The three vertices adjacent to vertex $A$ are at heights 10, 11, and 12 above the plane. The distance from vertex $A$ to the plane can be expressed as $\tfrac{r-\sqrt{s}}{t}$, where $r$, $s$, and $t$ are positive integers, and $r+s+t<1000$. Find $r+s+t$.
2020 Mexico National Olympiad, 4
Let $n\ge 3$ be an integer. In a game there are $n$ boxes in a circular array. At the beginning, each box contains an object which can be rock, paper or scissors, in such a way that there are no two adjacent boxes with the same object, and each object appears in at least one box.
Same as in the game, rock beats scissors, scissors beat paper, and paper beats rock.
The game consists on moving objects from one box to another according to the following rule:
[i]Two adjacent boxes and one object from each one are chosen in such a way that these are different, and we move the loser object to the box containing the winner object. For example, if we picked rock from box A and scissors from box B, we move scossors to box A.[/i]
Prove that, applying the rule enough times, it is possible to move all the objects to the same box.
[i]Proposed by Victor de la Fuente[/i]
2012 Romania National Olympiad, 2
[color=darkred]Let $n$ and $k$ be two natural numbers such that $n\ge 2$ and $1\le k\le n-1$ . Prove that if the matrix $A\in\mathcal{M}_n(\mathbb{C})$ has exactly $k$ minors of order $n-1$ equal to $0$ , then $\det (A)\ne 0$ .[/color]
2010 IberoAmerican, 1
There are ten coins a line, which are indistinguishable. It is known that two of them are false and have consecutive positions on the line. For each set of positions, you may ask how many false coins it contains. Is it possible to identify the false coins by making only two of those questions, without knowing the answer to the first question before making the second?
2006 QEDMO 2nd, 14
On the sides $BC$, $CA$, $AB$ of an acute-angled triangle $ABC$, we erect (outwardly) the squares $BB_aC_aC$, $CC_bA_bA$, $AA_cB_cB$, respectively. On the sides $B_cB_a$ and $C_aC_b$ of the triangles $BB_cB_a$ and $CC_aC_b$, we erect (outwardly) the squares $B_cB_vB_uB_a$ and $C_aC_uC_vC_b$.
Prove that $B_uC_u\parallel BC$.
[i]Comment.[/i] This problem originates in the 68th Moscow MO 2005, and a solution was posted in http://www.mathlinks.ro/Forum/viewtopic.php?t=30184 . However ingenious this solution is, there is a different one which shows a bit more: $B_uC_u=4\cdot BC$.
Darij
1995 AIME Problems, 14
In a circle of radius 42, two chords of length 78 intersect at a point whose distance from the center is 18. The two chords divide the interior of the circle into four regions. Two of these regions are bordered by segments of unequal lenghts, and the area of either of them can be expressed uniquley in the form $m\pi-n\sqrt{d},$ where $m, n,$ and $d$ are positive integers and $d$ is not divisible by the square of any prime number. Find $m+n+d.$
2023 Simon Marais Mathematical Competition, B1
Find the smallest positive real number $r$ with the following property: For every choice of $2023$ unit vectors $v_1,v_2, \dots ,v_{2023} \in \mathbb{R}^2$, a point $p$ can be found in the plane such that for each subset $S$ of $\{1,2, \dots , 2023\}$, the sum
$$\sum_{i \in S} v_i$$
lies inside the disc $\{x \in \mathbb{R}^2 : ||x-p|| \leq r\}$.
2008 IMC, 6
Let $ \mathcal{H}$ be an infinite-dimensional Hilbert space, let $ d>0$, and suppose that $ S$ is a set of points (not necessarily countable) in $ \mathcal{H}$ such that the distance between any two distinct points in $ S$ is equal to $ d$. Show that there is a point $ y\in\mathcal{H}$ such that
\[ \left\{\frac{\sqrt{2}}{d}(x\minus{}y): \ x\in S\right\}\]
is an orthonormal system of vectors in $ \mathcal{H}$.
2002 USAMTS Problems, 4
A transposition of a vector is created by switching exactly two entries of the vector. For example, $(1,5,3,4,2,6,7)$ is a transposition of $(1,2,3,4,5,6,7).$ Find the vector $X$ if $S=(0,0,1,1,0,1,1)$, $T=(0,0,1,1,1,1,0),$ $U=(1,0,1,0,1,1,0),$ and $V=(1,1,0,1,0,1,0)$ are all transpositions of $X$. Describe your method for finding $X.$