This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 236

2008 Harvard-MIT Mathematics Tournament, 5

Let $ f(x) \equal{} x^3 \plus{} x \plus{} 1$. Suppose $ g$ is a cubic polynomial such that $ g(0) \equal{} \minus{} 1$, and the roots of $ g$ are the squares of the roots of $ f$. Find $ g(9)$.

2009 Harvard-MIT Mathematics Tournament, 5

Let $a$, $b$, and $c$ be the $3$ roots of $x^3-x+1=0$. Find $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}.$

2014 AMC 12/AHSME, 19

There are exactly $N$ distinct rational numbers $k$ such that $|k|<200$ and \[5x^2+kx+12=0\] has at least one integer solution for $x$. What is $N$? $\textbf{(A) }6\qquad \textbf{(B) }12\qquad \textbf{(C) }24\qquad \textbf{(D) }48\qquad \textbf{(E) }78\qquad$

2007 Harvard-MIT Mathematics Tournament, 9

The complex numbers $\alpha_1$, $\alpha_2$, $\alpha_3$, and $\alpha_4$ are the four distinct roots of the equation $x^4+2x^3+2=0$. Determine the unordered set \[\{\alpha_1\alpha_2+\alpha_3\alpha_4,\alpha_1\alpha_3+\alpha_2\alpha_4,\alpha_1\alpha_4+\alpha_2\alpha_3\}.\]

2013 AMC 12/AHSME, 22

Tags: vieta , logarithm
Let $m>1$ and $n>1$ be integers. Suppose that the product of the solutions for $x$ of the equation \[8(\log_n x)(\log_m x) - 7 \log_n x - 6 \log_m x - 2013 = 0\] is the smallest possible integer. What is $m+n$? ${ \textbf{(A)}\ 12\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 24\qquad\textbf{(D}}\ 48\qquad\textbf{(E)}\ 272 $

2000 AMC 12/AHSME, 22

The graph below shows a portion of the curve defined by the quartic polynomial $ P(x) \equal{} x^4 \plus{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d$. Which of the following is the smallest? $ \textbf{(A)}\ P( \minus{} 1)$ $ \textbf{(B)}\ \text{The product of the zeros of }P$ $ \textbf{(C)}\ \text{The product of the non \minus{} real zeros of }P$ $ \textbf{(D)}\ \text{The sum of the coefficients of }P$ $ \textbf{(E)}\ \text{The sum of the real zeros of }P$ [asy] size(170); defaultpen(linewidth(0.7)+fontsize(7));size(250); real f(real x) { real y=1/4; return 0.2125(x*y)^4-0.625(x*y)^3-1.6125(x*y)^2+0.325(x*y)+5.3; } draw(graph(f,-10.5,19.4)); draw((-13,0)--(22,0)^^(0,-10.5)--(0,15)); int i; filldraw((-13,10.5)--(22,10.5)--(22,20)--(-13,20)--cycle,white, white); for(i=-3; i<6; i=i+1) { if(i!=0) { draw((4*i,0)--(4*i,-0.2)); label(string(i), (4*i,-0.2), S); }} for(i=-5; i<6; i=i+1){ if(i!=0) { draw((0,2*i)--(-0.2,2*i)); label(string(2*i), (-0.2,2*i), W); }} label("0", origin, SE);[/asy]

1950 AMC 12/AHSME, 3

The sum of the roots of the equation $ 4x^2\plus{}5\minus{}8x\equal{}0$ is equal to: $\textbf{(A)}\ 8 \qquad \textbf{(B)}\ -5 \qquad \textbf{(C)}\ -\dfrac{5}{4} \qquad \textbf{(D)}\ -2 \qquad \textbf{(E)}\ \text{None of these}$

2000 Turkey Team Selection Test, 1

$(a)$ Prove that for every positive integer $n$, the number of ordered pairs $(x, y)$ of integers satisfying $x^2-xy+y^2 = n$ is divisible by $3.$ $(b)$ Find all ordered pairs of integers satisfying $x^2-xy+y^2=727.$

1979 IMO Longlists, 10

Find all polynomials $f(x)$ with real coefficients for which \[f(x)f(2x^2) = f(2x^3 + x).\]

2006 Harvard-MIT Mathematics Tournament, 6

Tags: vieta
Let $a,b,c$ be the roots of $x^3-9x^2+11x-1=0$, and let $s=\sqrt{a}+\sqrt{b}+\sqrt{c}$. Find $s^4-18s^2-8s$.

2013 Miklós Schweitzer, 2

Prove there exists a constant $k_0$ such that for any $k\ge k_0$, the equation \[a^{2n}+b^{4n}+2013=ka^nb^{2n}\] has no positive integer solutions $a,b,n$. [i]Proposed by István Pink.[/i]

2009 International Zhautykov Olympiad, 1

On the plane, a Cartesian coordinate system is chosen. Given points $ A_1,A_2,A_3,A_4$ on the parabola $ y \equal{} x^2$, and points $ B_1,B_2,B_3,B_4$ on the parabola $ y \equal{} 2009x^2$. Points $ A_1,A_2,A_3,A_4$ are concyclic, and points $ A_i$ and $ B_i$ have equal abscissas for each $ i \equal{} 1,2,3,4$. Prove that points $ B_1,B_2,B_3,B_4$ are also concyclic.

1981 IMO, 3

Determine the maximum value of $m^2+n^2$, where $m$ and $n$ are integers in the range $1,2,\ldots,1981$ satisfying $(n^2-mn-m^2)^2=1$.

1985 Traian Lălescu, 1.1

$ n $ is a natural number, and $ S $ is the sum of all the solutions of the equations $$ x^2+a_k\cdot x+a_k=0,\quad a_k\in\mathbb{R} ,\quad k\in\{ 1,2,...,n\} . $$ Show that if $ |S|>2n\left( \sqrt[n]{n} -1\right) , $ then at least one of the equations has real solutions.

1988 IMO, 1

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

2007 Irish Math Olympiad, 1

Let $ r,s,$ and $ t$ be the roots of the cubic polynomial: $ p(x)\equal{}x^3\minus{}2007x\plus{}2002.$ Determine the value of: $ \frac{r\minus{}1}{r\plus{}1}\plus{}\frac{s\minus{}1}{s\plus{}1}\plus{}\frac{t\minus{}1}{t\plus{}1}$.

2022 Bulgarian Autumn Math Competition, Problem 9.1

Given is the equation: \[x^2+mx+2022=0\] a) Find all the values of the parameter $m$, such that the two solutions of the equation $x_1, x_2$ are $\textbf{natural}$ numbers b)Find all the values of the parameter $m$, such that the two solutions of the equation $x_1, x_2$ are $\textbf{integer}$ numbers

1982 Vietnam National Olympiad, 1

Determine a quadric polynomial with intergral coefficients whose roots are $\cos 72^{\circ}$ and $\cos 144^{\circ}.$

2010 Contests, 2

Each of two different lines parallel to the the axis $Ox$ have exactly two common points on the graph of the function $f(x)=x^3+ax^2+bx+c$. Let $\ell_1$ and $\ell_2$ be two lines parallel to $Ox$ axis which meet the graph of $f$ in points $K_1, K_2$ and $K_3, K_4$, respectively. Prove that the quadrilateral formed by $K_1, K_2, K_3$ and $ K_4$ is a rhombus if and only if its area is equal to $6$ units.

2013 AIME Problems, 12

Let $S$ be the set of all polynomials of the form $z^3+az^2+bz+c$, where $a$, $b$, and $c$ are integers. Find the number of polynomials in $S$ such that each of its roots $z$ satisfies either $\left\lvert z \right\rvert = 20$ or $\left\lvert z \right\rvert = 13$.

2002 AMC 12/AHSME, 6

Tags: quadratic , vieta
Suppose that $ a$ and $ b$ are are nonzero real numbers, and that the equation $ x^2\plus{}ax\plus{}b\equal{}0$ has solutions $ a$ and $ b$. Then the pair $ (a,b)$ is $ \textbf{(A)}\ (\minus{}2,1) \qquad \textbf{(B)}\ (\minus{}1,2) \qquad \textbf{(C)}\ (1,\minus{}2) \qquad \textbf{(D)}\ (2,\minus{}1) \qquad \textbf{(E)}\ (4,4)$

PEN A Problems, 4

If $a, b, c$ are positive integers such that \[0 < a^{2}+b^{2}-abc \le c,\] show that $a^{2}+b^{2}-abc$ is a perfect square.

2000 Baltic Way, 17

Find all real solutions to the following system of equations: \[\begin{cases} x+y+z+t=5\\xy+yz+zt+tx=4\\xyz+yzt+ztx+txy=3\\xyzt=-1\end{cases}\]

1958 AMC 12/AHSME, 41

The roots of $ Ax^2 \plus{} Bx \plus{} C \equal{} 0$ are $ r$ and $ s$. For the roots of \[ x^2 \plus{} px \plus{} q \equal{} 0 \] to be $ r^2$ and $ s^2$, $ p$ must equal: $ \textbf{(A)}\ \frac{B^2 \minus{} 4AC}{A^2}\qquad \textbf{(B)}\ \frac{B^2 \minus{} 2AC}{A^2}\qquad \textbf{(C)}\ \frac{2AC \minus{} B^2}{A^2}\qquad \\ \textbf{(D)}\ B^2 \minus{} 2C\qquad \textbf{(E)}\ 2C \minus{} B^2$

1994 Turkey Team Selection Test, 3

Find all integer pairs $(a,b)$ such that $a\cdot b$ divides $a^2+b^2+3$.