This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 China Team Selection Test, 4

Show that there exists a degree $58$ monic polynomial $$P(x) = x^{58} + a_1x^{57} + \cdots + a_{58}$$ such that $P(x)$ has exactly $29$ positive real roots and $29$ negative real roots and that $\log_{2017} |a_i|$ is a positive integer for all $1 \leq i \leq 58$.

2002 Moldova National Olympiad, 2

Tags:
Can a square of side $ 1024$ be partitioned into $ 31$ squares?Can a square of side $ 1023$ be partitioned into $ 30$ squares, one of which has a s side lenght not exceeding $ 1$?

2010 Contests, 3

Positive integer numbers $k$ and $n$ satisfy the inequality $k > n!$. Prove that there exist pairwisely different prime numbers $p_1, p_2, \ldots, p_n$ which are divisors of the numbers $k+1, k+2, \ldots, k+n$ respectively (i.e. $p_i|k+i$).

2022 Germany Team Selection Test, 3

Find all positive integers $n$ with the following property: the $k$ positive divisors of $n$ have a permutation $(d_1,d_2,\ldots,d_k)$ such that for $i=1,2,\ldots,k$, the number $d_1+d_2+\cdots+d_i$ is a perfect square.

2023 Balkan MO Shortlist, C3

In a given community of people, each person has at least two friends within the community. Whenever some people from this community sit on a round table such that each adjacent pair of people are friends, it happens that no non-adjacent pair of people are friends. Prove that there exist two people in this community such that each has exactly two friends and they have at least one common friend.

PEN R Problems, 3

Prove no three lattice points in the plane form an equilateral triangle.

2011 Brazil Team Selection Test, 5

Tags: algebra , function
Determine all functions $f:\mathbb{R}\to\mathbb{R}$, where $\mathbb{R}$ is the set of all real numbers, satisfying the following two conditions: 1) There exists a real number $M$ such that for every real number $x,f(x)<M$ is satisfied. 2) For every pair of real numbers $x$ and $y$, \[ f(xf(y))+yf(x)=xf(y)+f(xy)\] is satisfied.

2016 Postal Coaching, 6

Consider a set of $2016$ distinct points in the plane, no four of which are collinear. Prove that there is a subset of $63$ points among them such that no three of these $63$ points are collinear.

2016 Harvard-MIT Mathematics Tournament, 1

Tags:
Let $x$ and $y$ be complex numbers such that $x+y=\sqrt{20}$ and $x^2+y^2=15$. Compute $|x-y|$.

2023 Israel National Olympiad, P6

Tags: set , algebra
Determine if there exists a set $S$ of $5783$ different real numbers with the following property: For every $a,b\in S$ (not necessarily distinct) there are $c\neq d$ in $S$ so that $a\cdot b=c+d$.

1986 Bulgaria National Olympiad, Problem 2

Let $f(x)$ be a quadratic polynomial with two real roots in the interval $[-1,1]$. Prove that if the maximum value of $|f(x)|$ in the interval $[-1,1]$ is equal to $1$, then the maximum value of $|f'(x)|$ in the interval $[-1,1]$ is not less than $1$.

2015 Cuba MO, 1

Let $f$ be a function of the positive reals in the positive reals, such that $$f(x) \cdot f(y) - f(xy) = \frac{x}{y} + \frac{y}{x} \ \ for \ \ all \ \ x, y > 0 .$$ (a) Find $f(1)$. (b) Find $f(x)$.

2024-IMOC, G1

Tags: geometry
Given quadrilateral $ABCD$. $AC$ and $BD$ meets at $E$, and $M, N$ are the midpoints of $AC, BD$, respectively. Let the circumcircles of $ABE$ and $CDE$ meets again at $X\neq E$. Prove that $E, M, N, X$ are concyclic. [i]Proposed by chengbilly[/i]

2022 Princeton University Math Competition, A1 / B3

Circle $\Gamma$ is centered at $(0, 0)$ in the plane with radius $2022\sqrt3$. Circle $\Omega$ is centered on the $x$-axis, passes through the point $A = (6066, 0)$, and intersects $\Gamma$ orthogonally at the point $P = (x, y)$ with $y > 0$. If the length of the minor arc $AP$ on $\Omega$ can be expressed as $\frac{m\pi}{n}$ forrelatively prime positive integers $m, n$, find $m + n$. (Two circles intersect orthogonally at a point $P$ if the tangent lines at $P$ form a right angle.)

2006 National Olympiad First Round, 3

Tags:
$a_1=-1$, $a_2=2$, and $a_n=\frac {a_{n-1}}{a_{n-2}}$ for $n\geq 3$. What is $a_{2006}$? $ \textbf{(A)}\ -2 \qquad\textbf{(B)}\ -1 \qquad\textbf{(C)}\ -\frac 12 \qquad\textbf{(D)}\ \frac 12 \qquad\textbf{(E)}\ 2 $

2006 Estonia Math Open Junior Contests, 2

A farmer noticed that, during the last year, there were exactly as many calves born as during the two preceding years together. Even better, the number of pigs born during the last year was one larger than the number of pigs born during the two preceding years together. The farmer promised that if such a trend will continue then, after some years, at least twice as many pigs as calves will be born in his cattle, even though this far this target has not yet ever been reached. Will the farmer be able to keep his promise?

1966 IMO Longlists, 35

Let $ax^{3}+bx^{2}+cx+d$ be a polynomial with integer coefficients $a,$ $b,$ $c,$ $d$ such that $ad$ is an odd number and $bc$ is an even number. Prove that (at least) one root of the polynomial is irrational.

2021 AMC 12/AHSME Fall, 9

Tags: logarithm
A right rectangular prism whose surface area and volume are numerically equal has edge lengths $\log_2 x$, $\log_3 x$, and $\log_4 x$. What is $x$? $\textbf{(A) }2\sqrt{6}\qquad\textbf{(B) }6\sqrt{6}\qquad\textbf{(C) }24\qquad\textbf{(D) }48\qquad\textbf{(E) }576$

1955 Moscow Mathematical Olympiad, 313-

Tags: geometry
Given two lines in a plane, intersecting at an acute angle. In the direction of one of the straight lines, compression is performed with a coefficient of 1/2. Prove that there is a point from which the distance to the point of intersection of the lines increases. Note: What is meant here is a transformation in which each point moves parallel to one straight line so that its distance to the second straight line is halved, while it remains the same side from the second straight line. [hide=original wording] На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие 1 с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится. Здесь имеется в виду преобразование, при котором каждая точка перемещается параллельно одной прямой так, что её расстояние до второй прямой уменьшается вдвое, причём она остаётся по ту же самую сторону от второй прямой[/hide]

2022 239 Open Mathematical Olympiad, 5

Prove that there are infinitely many positive integers $k$ such that $k(k+1)(k+2)(k+3)$ has no prime divisor of the form $8t+5.$

2005 Bulgaria Team Selection Test, 3

Tags: algebra , function
Let $\mathbb{R}^{*}$ be the set of non-zero real numbers. Find all functions $f : \mathbb{R}^{*} \to \mathbb{R}^{*}$ such that $f(x^{2}+y) = (f(x))^{2} + \frac{f(xy)}{f(x)}$, for all $x,y \in \mathbb{R}^{*}$ and $-x^{2} \not= y$.

1996 IMO Shortlist, 5

Show that there exists a bijective function $ f: \mathbb{N}_{0}\to \mathbb{N}_{0}$ such that for all $ m,n\in \mathbb{N}_{0}$: \[ f(3mn \plus{} m \plus{} n) \equal{} 4f(m)f(n) \plus{} f(m) \plus{} f(n). \]

2016 Azerbaijan Team Selection Test, 1

Tangents from the point $A$ to the circle $\Gamma$ touche this circle at $C$ and $D$.Let $B$ be a point on $\Gamma$,different from $C$ and $D$. The circle $\omega$ that passes through points $A$ and $B$ intersect with lines $AC$ and $AD$ at $F$ and $E$,respectively.Prove that the circumcircles of triangles $ABC$ and $DEB$ are tangent if and only if the points $C,D,F$ and $E$ are cyclic.

1995 IberoAmerican, 2

The incircle of a triangle $ABC$ touches the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$ respectively. Let the line $AD$ intersect this incircle of triangle $ABC$ at a point $X$ (apart from $D$). Assume that this point $X$ is the midpoint of the segment $AD$, this means, $AX = XD$. Let the line $BX$ meet the incircle of triangle $ABC$ at a point $Y$ (apart from $X$), and let the line $CX$ meet the incircle of triangle $ABC$ at a point $Z$ (apart from $X$). Show that $EY = FZ$.

1999 All-Russian Olympiad, 1

Do there exist $19$ distinct natural numbers with equal sums of digits, whose sum equals $1999$?