This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1991 IMO Shortlist, 3

Let $ S$ be any point on the circumscribed circle of $ PQR.$ Then the feet of the perpendiculars from S to the three sides of the triangle lie on the same straight line. Denote this line by $ l(S, PQR).$ Suppose that the hexagon $ ABCDEF$ is inscribed in a circle. Show that the four lines $ l(A,BDF),$ $ l(B,ACE),$ $ l(D,ABF),$ and $ l(E,ABC)$ intersect at one point if and only if $ CDEF$ is a rectangle.

2017 China Team Selection Test, 6

A plane has no vertex of a regular dodecahedron on it,try to find out how many edges at most may the plane intersect the regular dodecahedron?

2002 All-Russian Olympiad, 1

There are eight rooks on a chessboard, no two attacking each other. Prove that some two of the pairwise distances between the rooks are equal. (The distance between two rooks is the distance between the centers of their cell.)

2018 Thailand Mathematical Olympiad, 9

In $\vartriangle ABC$ the incircle is tangent to $AB$ at $D$. Let $P$ be a point on $BC$ different from $B$ and $C$, and let $K$ and $L$ be incenters of $\vartriangle ABP$ and $\vartriangle ACP$ respectively. Suppose that the circumcircle of $\vartriangle KP L$ cuts $AP$ again at $Q$. Prove that $AD = AQ$.

2014 Danube Mathematical Competition, 1

Determine the natural number $a =\frac{p+q}{r}+\frac{q+r}{p}+\frac{r+p}{q}$ where $p, q$ and $r$ are prime positive numbers.

2024 ELMO Shortlist, N2

Call a positive integer [i]emphatic[/i] if it can be written in the form $a^2+b!$, where $a$ and $b$ are positive integers. Prove that there are infinitely many positive integers $n$ such that $n$, $n+1$, and $n+2$ are all [i]emphatic[/i]. [i]Allen Wang[/i]

2004 AMC 12/AHSME, 8

Tags: geometry
In the overlapping triangles $ \triangle{ABC}$ and $ \triangle{ABE}$ sharing common side $ AB$, $ \angle{EAB}$ and $ \angle{ABC}$ are right angles, $ AB \equal{} 4$, $ BC \equal{} 6$, $ AE \equal{} 8$, and $ \overline{AC}$ and $ \overline{BE}$ intersect at $ D$. What is the difference between the areas of $ \triangle{ADE}$ and $ \triangle{BDC}$? [asy] defaultpen(linewidth(0.8)+fontsize(10));size(200); unitsize(5mm) ; pair A=(0,0), B=(4,0), C=(4,6), D=(0,8), H=intersectionpoint(C--A, D--B); draw(A--B--C--cycle) ; draw(A--B--D--cycle) ; label("E",(0,8), N) ; label("8",(0,4),W) ; label("A",A,S) ; label("B",B,SE) ; label("C",C,NE) ; label("6",(4,3),E) ; label("4",(2,0),S) ; label("D",H,2*dir(85)) ;[/asy] $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$

1992 Tournament Of Towns, (348) 6

Consider the sequence $a(n)$ defined by the following conditions: $$a(1) = 1\,\,\,\, a(n + 1) = a(n) + [\sqrt{a(n)}] \,\,\, , \,\,\,\, n = 1,2,3,...$$ Prove that the sequence contains an infinite number of perfect squares. (Note: $[x]$ means the integer part of $x$, that is the greatest integer not greater than $x$.) (A Andjans)

2003 Irish Math Olympiad, 3

Tags: algebra
Find all the (x,y) integer ,if $y^2+2y=x^4+20x^3+104x^2+40x+2003$

Mexican Quarantine Mathematical Olympiad, #5

Let $\mathbb{N} = \{1, 2, 3, \dots \}$ be the set of positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$, such that for all positive integers $n$ and prime numbers $p$: $$p \mid f(n)f(p-1)!+n^{f(p)}.$$ [i]Proposed by Dorlir Ahmeti[/i]

2020 Sharygin Geometry Olympiad, 18

Bisectors $AA_1$, $BB_1$, and $CC_1$ of triangle $ABC$ meet at point $I$. The perpendicular bisector to $BB_1$ meets $AA_1,CC_1$ at points $A_0,C_0$ respectively. Prove that the circumcircles of triangles $A_0IC_0$ and $ABC$ touch.

1998 AMC 12/AHSME, 19

How many triangles have area $ 10$ and vertices at $ (\minus{}5,0)$, $ (5,0)$, and $ (5\cos \theta, 5\sin \theta)$ for some angle $ \theta$? $ \textbf{(A)}\ 0\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 8$

MOAA Individual Speed General Rounds, 2023.7

Tags:
Andy flips a strange coin for which the probability of flipping heads is $\frac{1}{2^k+1}$, where $k$ is the number of heads that appeared previously. If Andy flips the coin repeatedly until he gets heads 10 times, what is the expected number of total flips he performs? [i]Proposed by Harry Kim[/i]

2023 Assara - South Russian Girl's MO, 2

The natural numbers $a$ and $b$ are such that $a^a$ is divisible by $b^b$. Can we say that then $a$ is divisible by $b$?

2013 Online Math Open Problems, 22

In triangle $ABC$, $AB = 28$, $AC = 36$, and $BC = 32$. Let $D$ be the point on segment $BC$ satisfying $\angle BAD = \angle DAC$, and let $E$ be the unique point such that $DE \parallel AB$ and line $AE$ is tangent to the circumcircle of $ABC$. Find the length of segment $AE$. [i]Ray Li[/i]

2021 Romanian Master of Mathematics Shortlist, A1

Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[ f(xy+f(x)) + f(y) = xf(y) + f(x+y) \] for all real numbers $x$ and $y$.

1966 AMC 12/AHSME, 3

Tags:
If the arithmetic mean of two numbers is $6$ and thier geometric mean is $10$, then an equation with the given two numbers as roots is: $\text{(A)} \ x^2+12x+100=0 ~~ \text{(B)} \ x^2+6x+100=0 ~~ \text{(C)} \ x^2-12x-10=0$ $\text{(D)} \ x^2-12x+100=0 \qquad \text{(E)} \ x^2-6x+100=0$

2022 China Team Selection Test, 5

Show that there exist constants $c$ and $\alpha > \frac{1}{2}$, such that for any positive integer $n$, there is a subset $A$ of $\{1,2,\ldots,n\}$ with cardinality $|A| \ge c \cdot n^\alpha$, and for any $x,y \in A$ with $x \neq y$, the difference $x-y$ is not a perfect square.

2017 239 Open Mathematical Olympiad, 1

Denote every permutation of $1,2,\dots, n$ as $\sigma =(a_1,a_2,\dots,n)$. Prove that the sum $$\sum \frac{1}{(a_1)(a_1+a_2)(a_1+a_2+a_3)\dots(a_1+a_2+\dots+a_n)}$$ taken over all possible permutations $\sigma$ equals $\frac{1}{n!}$.

2000 Taiwan National Olympiad, 2

Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.

1969 AMC 12/AHSME, 12

Tags:
Let $F=\dfrac{6x^2+16x+3m}6$ be the square of an expression which is linear in $x$. Then $m$ has a particular value between: $\textbf{(A) }3\text{ and }4\qquad \textbf{(B) }4\text{ and }5\qquad \textbf{(C) }5\text{ and }6\qquad$ $\textbf{(D) }-4\text{ and }-3\qquad \textbf{(E) }-6\text{ and }-5$

1992 AMC 12/AHSME, 27

A circle of radius $r$ has chords $\overline{AB}$ of length $10$ and $\overline{CD}$ of length $7$. When $\overline{AB}$ and $\overline{CD}$ are extended through $B$ and $C$, respectively, they intersect at $P$, which is outside the circle. If $\angle APD = 60^{\circ}$ and $BP = 8$, then $r^{2} =$ $ \textbf{(A)}\ 70\qquad\textbf{(B)}\ 71\qquad\textbf{(C)}\ 72\qquad\textbf{(D)}\ 73\qquad\textbf{(E)}\ 74 $

2020 AMC 10, 4

Tags:
A driver travels for $2$ hours at $60$ miles per hour, during which her car gets $30$ miles per gallon of gasoline. She is paid $\$0.50$ per mile, and her only expense is gasoline at $\$2.00$ per gallon. What is her net rate of pay, in dollars per hour, after this expense? $\textbf{(A) }20 \qquad\textbf{(B) }22 \qquad\textbf{(C) }24 \qquad\textbf{(D) } 25\qquad\textbf{(E) } 26$

2009 Czech-Polish-Slovak Match, 2

Tags: induction , algebra
For positive integers $a$ and $k$, define the sequence $a_1,a_2,\ldots$ by \[a_1=a,\qquad\text{and}\qquad a_{n+1}=a_n+k\cdot\varrho(a_n)\qquad\text{for } n=1,2,\ldots\] where $\varrho(m)$ denotes the product of the decimal digits of $m$ (for example, $\varrho(413)=12$ and $\varrho(308)=0$). Prove that there are positive integers $a$ and $k$ for which the sequence $a_1,a_2,\ldots$ contains exactly $2009$ different numbers.

1999 Kazakhstan National Olympiad, 2

Prove that for any odd $ n $ there exists a unique polynomial $ P (x) $ $ n $ -th degree satisfying the equation $ P \left (x- \frac {1} {x} \right) = x ^ n- \frac {1} {x ^ n}. $ Is this true for any natural number $ n $?