This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 ASDAN Math Tournament, 6

Tags:
A container is filled with a total of $51$ red and white balls and has at least $1$ red ball and $1$ white ball. The probability of picking up $3$ red balls and $1$ white ball, without replacement, is equivalent to the probability of picking up $1$ red ball and $2$ white balls, without replacement. Compute the original number of red balls in the container.

2023 ITAMO, 1

Let $a, b$ be positive integers such that $54^a=a^b$. Prove that $a$ is a power of $54$.

2016 AMC 10, 10

A rug is made with three different colors as shown. The areas of the three differently colored regions form an arithmetic progression. The inner rectangle is one foot wide, and each of the two shaded regions is $1$ foot wide on all four sides. What is the length in feet of the inner rectangle? [asy] size(6cm); defaultpen(fontsize(9pt)); path rectangle(pair X, pair Y){ return X--(X.x,Y.y)--Y--(Y.x,X.y)--cycle; } filldraw(rectangle((0,0),(7,5)),gray(0.5)); filldraw(rectangle((1,1),(6,4)),gray(0.75)); filldraw(rectangle((2,2),(5,3)),white); label("$1$",(0.5,2.5)); draw((0.3,2.5)--(0,2.5),EndArrow(TeXHead)); draw((0.7,2.5)--(1,2.5),EndArrow(TeXHead)); label("$1$",(1.5,2.5)); draw((1.3,2.5)--(1,2.5),EndArrow(TeXHead)); draw((1.7,2.5)--(2,2.5),EndArrow(TeXHead)); label("$1$",(4.5,2.5)); draw((4.5,2.7)--(4.5,3),EndArrow(TeXHead)); draw((4.5,2.3)--(4.5,2),EndArrow(TeXHead)); label("$1$",(4.1,1.5)); draw((4.1,1.7)--(4.1,2),EndArrow(TeXHead)); draw((4.1,1.3)--(4.1,1),EndArrow(TeXHead)); label("$1$",(3.7,0.5)); draw((3.7,0.7)--(3.7,1),EndArrow(TeXHead)); draw((3.7,0.3)--(3.7,0),EndArrow(TeXHead)); [/asy] $\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 6 \qquad \textbf{(E) }8$

2023 Ukraine National Mathematical Olympiad, 8.5

Tags: equality , algebra
Do there exist $10$ real numbers, not all of which are equal, each of which is equal to the square of the sum of the remaining $9$ numbers? [i]Proposed by Bogdan Rublov[/i]

2008 Sharygin Geometry Olympiad, 9

(A.Zaslavsky, 9--10) The reflections of diagonal $ BD$ of a quadrilateral $ ABCD$ in the bisectors of angles $ B$ and $ D$ pass through the midpoint of diagonal $ AC$. Prove that the reflections of diagonal $ AC$ in the bisectors of angles $ A$ and $ C$ pass through the midpoint of diagonal $ BD$ (There was an error in published condition of this problem).

2022 Saint Petersburg Mathematical Olympiad, 4

There are two piles of stones: $1703$ stones in one pile and $2022$ in the other. Sasha and Olya play the game, making moves in turn, Sasha starts. Let before the player's move the heaps contain $a$ and $b$ stones, with $a \geq b$. Then, on his own move, the player is allowed take from the pile with $a$ stones any number of stones from $1$ to $b$. A player loses if he can't make a move. Who wins? Remark: For 10.4, the initial numbers are $(444,999)$

2019 PUMaC Algebra B, 6

Tags: algebra , function
Let $\mathbb N_0$ be the set of non-negative integers. There is a triple $(f,a,b)$, where $f$ is a function from $\mathbb N_0$ to $\mathbb N_0$ and $a,b\in\mathbb N_0$ that satisfies the following conditions: [list] [*]$f(1)=2$ [*]$f(a)+f(b)\leq 2\sqrt{f(a)}$ [*]For all $n>0$, we have $f(n)=f(n-1)f(b)+2n-f(b)$ [/list] Find the sum of all possible values of $f(b+100)$.

2012 NIMO Problems, 4

In $\triangle ABC$, $AB = AC$. Its circumcircle, $\Gamma$, has a radius of 2. Circle $\Omega$ has a radius of 1 and is tangent to $\Gamma$, $\overline{AB}$, and $\overline{AC}$. The area of $\triangle ABC$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a, b, c$, where $b$ is squarefree and $\gcd (a, c) = 1$. Compute $a + b + c$. [i]Proposed by Aaron Lin[/i]

2014 NIMO Problems, 15

Let $A = (0,0)$, $B=(-1,-1)$, $C=(x,y)$, and $D=(x+1,y)$, where $x > y$ are positive integers. Suppose points $A$, $B$, $C$, $D$ lie on a circle with radius $r$. Denote by $r_1$ and $r_2$ the smallest and second smallest possible values of $r$. Compute $r_1^2 + r_2^2$. [i]Proposed by Lewis Chen[/i]

2004 Nordic, 1

Tags: algebra
Twenty-seven balls labelled from $1$ to $27$ are distributed in three bowls: red, blue, and yellow. What are the possible values of the number of balls in the red bowl if the average labels in the red, blue and yellow bowl are $15$, $3$, and $18$, respectively?

2011 Kyrgyzstan National Olympiad, 5

Tags: geometry
Points $M$ and $N$ are chosen on sides $AB$ and $BC$,respectively, in a triangle $ABC$, such that point $O$ is interserction of lines $CM$ and $AN$. Given that $AM+AN=CM+CN$. Prove that $AO+AB=CO+CB$.

2016 Germany Team Selection Test, 2

Determine all functions $f:\mathbb{Z}\rightarrow\mathbb{Z}$ with the property that \[f(x-f(y))=f(f(x))-f(y)-1\] holds for all $x,y\in\mathbb{Z}$.

2005 Iran MO (2nd round), 1

We have a $2\times n$ rectangle. We call each $1\times1$ square a room and we show the room in the $i^{th}$ row and $j^{th}$ column as $(i,j)$. There are some coins in some rooms of the rectangle. If there exist more than $1$ coin in each room, we can delete $2$ coins from it and add $1$ coin to its right adjacent room OR we can delete $2$ coins from it and add $1$ coin to its up adjacent room. Prove that there exists a finite configuration of allowable operations such that we can put a coin in the room $(1,n)$.

2020 BMT Fall, 10

For $k\ge 1$, define $a_k=2^k$. Let $$S=\sum_{k=1}^{\infty}\cos^{-1}\left(\frac{2a_k^2-6a_k+5}{\sqrt{(a_k^2-4a_k+5)(4a_k^2-8a_k+5)}}\right).$$ Compute $\lfloor 100S\rfloor$.

2023 Harvard-MIT Mathematics Tournament, 27

Tags: guts
Suppose $m>n>1$ are positive integers such that there exist $n$ complex numbers $x_1, x_2, \ldots, x_n$ for which [list] [*]$x_1^k+x_2^k+\ldots+x_n^k=1$ for $k=1, 2, \ldots, n-1;$ [*]$x_1^n+x_2^n+\ldots+x_n^n=2;$ and [*]$x_1^m+x_2^m+\ldots+x_n^m= 4.$ [/list] Compute the smallest possible value of $m+n.$

1989 Romania Team Selection Test, 2

The sequence ($a_n$) is defined by $a_1 = a_2 = 1, a_3 = 199$ and $a_{n+1} =\frac{1989+a_na_{n-1}}{a_{n-2}}$ for all $n \ge 3$. Prove that all terms of the sequence are positive integers

2012 CHMMC Spring, 5

Suppose $S$ is a subset of $\{1, 2, 3, 4, 5, 6, 7\}$. How many different possible values are there for the product of the elements in $S$?

1999 Harvard-MIT Mathematics Tournament, 1

If $a@b=\dfrac{a^3-b^3}{a-b}$, for how many real values of $a$ does $a@1=0$?

2001 Mongolian Mathematical Olympiad, Problem 5

Tags: geometry
Chords $AC$ and $BD$ of a circle $w$ intersect at $E$. A circle that is internally tangent to $w$ at a point $F$ also touches the segments $DE$ and $EC$. Prove that the bisector of $\angle AFB$ passes through the incenter of $\triangle AEB$.

2015 Online Math Open Problems, 4

Tags:
Let $\omega$ be a circle with diameter $AB$ and center $O$. We draw a circle $\omega_A$ through $O$ and $A$, and another circle $\omega_B$ through $O$ and $B$; the circles $\omega_A$ and $\omega_B$ intersect at a point $C$ distinct from $O$. Assume that all three circles $\omega$, $\omega_A$, $\omega_B$ are congruent. If $CO = \sqrt 3$, what is the perimeter of $\triangle ABC$? [i]Proposed by Evan Chen[/i]

MOAA Accuracy Rounds, 2021.9

Tags: accuracy
Let $S$ be the set of ordered pairs $(x,y)$ of positive integers for which $x+y\le 20$. Evaluate \[\sum_{(x, y) \in S} (-1)^{x+y}xy.\] [i]Proposed by Andrew Wen[/i]

OMMC POTM, 2024 7

Let $A$ and $B$ be two points on the same line $\ell$. If the points $P$ and $Q$ are two points $X$ on $\ell$ that mazimize and minimize the ratio $\frac{AX}{BX}$ respectively, prove that $A,B,P$ and $Q$ are concyclic.

2023 Assam Mathematics Olympiad, 3

Tags:
Find the number of integer solutions of $||x| - 2023| < 2020$.

2022 AMC 12/AHSME, 23

Let $h_n$ and $k_n$ be the unique relatively prime positive integers such that \[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = \frac{h_n}{k_n}.\] Let $L_n$ denote the least common multiple of the numbers $1, 2, 3,\cdots, n$. For how many integers $n$ with $1 \le n \le 22$ is $k_n<L_n$? $\textbf{(A)} ~0 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~7 \qquad\textbf{(D)} ~8 \qquad\textbf{(E)} ~10 $

1973 All Soviet Union Mathematical Olympiad, 181

$n$ squares of the infinite cross-lined sheet of paper are painted with black colour (others are white). Every move all the squares of the sheet change their colour simultaneously. The square gets the colour, that had the majority of three ones: the square itself, its neighbour from the right side and its neighbour from the upper side. a) Prove that after the finite number of the moves all the black squares will disappear. b) Prove that it will happen not later than on the $n$-th move