This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1989 India National Olympiad, 1

Prove that the Polynomial $ f(x) \equal{} x^{4} \plus{} 26x^{3} \plus{} 56x^{2} \plus{} 78x \plus{} 1989$ can't be expressed as a product $ f(x) \equal{} p(x)q(x)$ , where $ p(x)$ and $ q(x)$ are both polynomial with integral coefficients and with degree at least $ 1$.

2010 Malaysia National Olympiad, 9

Tags: algebra
A number of runners competed in a race. When Ammar finished, there were half as many runners who had finished before him compared to the number who finished behind him. Julia was the 10th runner to finish behind Ammar. There were twice as many runners who had finished before Julia compared to the number who finished behind her. How many runners were there in the race?

2020 Serbian Mathematical Olympiad, Problem 2

We are given a polyhedron with at least $5$ vertices, such that exactly $3$ edges meet in each of the vertices. Prove that we can assign a rational number to every vertex of the given polyhedron such that the following conditions are met: $(i)$ At least one of the numbers assigned to the vertices is equal to $2020$. $(ii)$ For every polygonal face, the product of the numbers assigned to the vertices of that face is equal to $1$.

1996 Canadian Open Math Challenge, 10

Tags: trigonometry
Determine the sum of angles $A,B,$ where $0^\circ \leq A,B, \leq 180^\circ$ and \[ \sin A + \sin B = \sqrt{\frac{3}{2}}, \cos A + \cos B = \sqrt{\frac{1}{2}} \]

2006 China Team Selection Test, 2

$x_{1}, x_{2}, \cdots, x_{n}$ are positive numbers such that $\sum_{i=1}^{n}x_{i}= 1$. Prove that \[\left( \sum_{i=1}^{n}\sqrt{x_{i}}\right) \left( \sum_{i=1}^{n}\frac{1}{\sqrt{1+x_{i}}}\right) \leq \frac{n^{2}}{\sqrt{n+1}}\]

Kvant 2024, M2779

Prove that for any natural number $k{}$ there is a natural number $n{}$ such that $\mathrm{lcm}(1,2,\ldots,n)=\mathrm{lcm}(1,2,\ldots,n+k).$ [i]From the folklore[/i]

2018 USAMO, 6

Tags:
Let $a_n$ be the number of permutations $(x_1, x_2, \dots, x_n)$ of the numbers $(1,2,\dots, n)$ such that the $n$ ratios $\frac{x_k}{k}$ for $1\le k\le n$ are all distinct. Prove that $a_n$ is odd for all $n\ge 1$. [i]Proposed by Richard Stong[/i]

2002 China Team Selection Test, 1

Tags: algebra
Given a positive integer $ n$, for all positive integers $ a_1, a_2, \cdots, a_n$ that satisfy $ a_1 \equal{} 1$, $ a_{i \plus{} 1} \leq a_i \plus{} 1$, find $ \displaystyle \sum_{i \equal{} 1}^{n} a_1a_2 \cdots a_i$.

2018 Romanian Master of Mathematics Shortlist, C4

Let $k$ and $s$ be positive integers such that $s<(2k + 1)^2$. Initially, one cell out of an $n \times n$ grid is coloured green. On each turn, we pick some green cell $c$ and colour green some $s$ out of the $(2k + 1)^2$ cells in the $(2k + 1) \times (2k + 1)$ square centred at $c$. No cell may be coloured green twice. We say that $s$ is $k-sparse$ if there exists some positive number $C$ such that, for every positive integer $n$, the total number of green cells after any number of turns is always going to be at most $Cn$. Find, in terms of $k$, the least $k$-sparse integer $s$. [I]Proposed by Nikolai Beluhov.[/i]

2017 India PRMO, 5

Let $u, v,w$ be real numbers in geometric progression such that $u > v > w$. Suppose $u^{40} = v^n = w^{60}$. Find the value of $n$.

2010 Romanian Masters In Mathematics, 4

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions: (i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers); (ii) $|a_1-b_1|+|a_2-b_2|=2010$; (iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$; (iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$. [i]Massimo Gobbino, Italy[/i]

2017 Polish MO Finals, 3

Integers $a_1, a_2, \ldots, a_n$ satisfy $$1<a_1<a_2<\ldots < a_n < 2a_1.$$ If $m$ is the number of distinct prime factors of $a_1a_2\cdots a_n$, then prove that $$(a_1a_2\cdots a_n)^{m-1}\geq (n!)^m.$$

2022 Bulgaria National Olympiad, 1

A white equilateral triangle $T$ with side length $2022$ is divided into equilateral triangles with side $1$ (cells) by lines parallel to the sides of $T$. We'll call two cells $\textit{adjacent}$ if they have a common vertex. Ivan colours some of the cells in black. Without knowing which cells are black, Peter chooses a set $S$ of cells and Ivan tells him the parity of the number of black cells in $S$. After knowing this, Peter is able to determine the parity of the number of $\textit{adjacent}$ cells of different colours. Find all possible cardinalities of $S$ such that this is always possible independent of how Ivan chooses to colour the cells.

1953 Putnam, B7

Let $w\in (0,1)$ be an irrational number. Prove that $w$ has a unique convergent expansion of the form $$w= \frac{1}{p_0} - \frac{1}{p_0 p_1 } + \frac{1}{ p_0 p_1 p_2 } - \frac{1}{p_0 p_1 p_2 p_3 } +\ldots,$$ where $1\leq p_0 < p_1 < p_2 <\ldots $ are integers. If $w= \frac{1}{\sqrt{2}},$ find $p_0 , p_1 , p_2.$

2013 Canadian Mathematical Olympiad Qualification Repechage, 2

In triangle $ABC$, $\angle A = 90^\circ$ and $\angle C = 70^\circ$. $F$ is point on $AB$ such that $\angle ACF = 30^\circ$, and $E$ is a point on $CA$ such that $\angle CF E = 20^\circ$. Prove that $BE$ bisects $\angle B$.

2021 Iranian Combinatorics Olympiad, P1

In the lake, there are $23$ stones arranged along a circle. There are $22$ frogs numbered $1, 2, \cdots, 22$ (each number appears once). Initially, each frog randomly sits on a stone (several frogs might sit on the same stone). Every minute, all frogs jump at the same time as follows: the frog number $i$ jumps $i$ stones forward in the clockwise direction. (In particular, the frog number $22$ jumps $1$ stone in the counter-clockwise direction.) Prove that at some point, at least $6$ stones will be empty.

2013 Abels Math Contest (Norwegian MO) Final, 2

In a triangle $T$, all the angles are less than $90^o$, and the longest side has length $s$. Show that for every point $p$ in $T$ we can pick a corner $h$ in $T$ such that the distance from $p$ to $h$ is less than or equal to $s/\sqrt3$.

2009 AMC 8, 17

The positive integers $ x$ and $ y$ are the two smallest positive integers for which the product of $ 360$ and $ x$ is a square and the product of $ 360$ and $ y$ is a cube. What is the sum of $ x$ and $ y$? $ \textbf{(A)}\ 80 \qquad \textbf{(B)}\ 85 \qquad \textbf{(C)}\ 115 \qquad \textbf{(D)}\ 165 \qquad \textbf{(E)}\ 610$

2009 Today's Calculation Of Integral, 441

Evaluate $ \int_1^e \frac{(x^2\ln x\minus{}1)e^x}{x}\ dx.$

1954 AMC 12/AHSME, 24

Tags:
The values of $ k$ for which the equation $ 2x^2\minus{}kx\plus{}x\plus{}8\equal{}0$ will have real and equal roots are: $ \textbf{(A)}\ 9 \text{ and }\minus{}7 \qquad \textbf{(B)}\ \text{only }\minus{}7 \qquad \textbf{(C)}\ \text{9 and 7} \\ \textbf{(D)}\ \minus{}9 \text{ and }\minus{}7 \qquad \textbf{(E)}\ \text{only 9}$

2006 China Western Mathematical Olympiad, 4

Assuming that the positive integer $a$ is not a perfect square, prove that for any positive integer n, the sum ${S_{n}=\sum_{i=1}^{n}\{a^{\frac{1}{2}}\}^{i}}$ is irrational.

2005 Today's Calculation Of Integral, 88

A function $f(x)$ satisfies $\begin{cases} f(x)=-f''(x)-(4x-2)f'(x)\\ f(0)=a,\ f(1)=b \end{cases}$ Evaluate $\int_0^1 f(x)(x^2-x)\ dx.$

2016 CHMMC (Fall), 12

For a positive real number $a$, let $C$ be the cube with vertices at $(\pm a, \pm a, \pm a)$ and let $T$ be the tetrahedron with vertices at $(2a,2a,2a),(2a, -2a, -2a),(-2a, 2a, -2a),(-2a, -2a, -2a)$. If the intersection of $T$ and $C$ has volume $ka^3$ for some $k$, find $k$.

1996 Mexico National Olympiad, 2

There are $64$ booths around a circular table and on each one there is a chip. The chips and the corresponding booths are numbered $1$ to $64$ in this order. At the center of the table there are $1996$ light bulbs which are all turned off. Every minute the chips move simultaneously in a circular way (following the numbering sense) as follows: chip $1$ moves one booth, chip $2$ moves two booths, etc., so that more than one chip can be in the same booth. At any minute, for each chip sharing a booth with chip $1$ a bulb is lit. Where is chip $1$ on the first minute in which all bulbs are lit?

2011 Romania Team Selection Test, 1

Let $ABCD$ be a cyclic quadrilateral. The lines $BC$ and $AD$ meet at a point $P$. Let $Q$ be the point on the line $BP$, different from $B$, such that $PQ=BP$. Consider the parallelograms $CAQR$ and $DBCS$. Prove that the points $C,Q,R,S$ lie on a circle.