This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2015 IMO Shortlist, N4

Suppose that $a_0, a_1, \cdots $ and $b_0, b_1, \cdots$ are two sequences of positive integers such that $a_0, b_0 \ge 2$ and \[ a_{n+1} = \gcd{(a_n, b_n)} + 1, \qquad b_{n+1} = \operatorname{lcm}{(a_n, b_n)} - 1. \] Show that the sequence $a_n$ is eventually periodic; in other words, there exist integers $N \ge 0$ and $t > 0$ such that $a_{n+t} = a_n$ for all $n \ge N$.

OIFMAT I 2010, 1

Let $ f (n) $ be a function that fulfills the following properties: $\bullet$ For each natural $ n $, $ f (n) $ is an integer greater than or equal to $ 0 $. $\bullet$ $f (n) = 2010 $, if $ n $ ends in $ 7 $. For example, $ f (137) = 2010 $. $\bullet$ If $ a $ is a divisor of $ b $, then: $ f \left(\frac {b} {a} \right) = | f (b) -f (a) | $. Find $ \displaystyle f (2009 ^ {2009 ^ {2009}}) $ and justify your answer.

2010 Today's Calculation Of Integral, 564

In the coordinate plane with $ O(0,\ 0)$, consider the function $ C: \ y \equal{} \frac 12x \plus{} \sqrt {\frac 14x^2 \plus{} 2}$ and two distinct points $ P_1(x_1,\ y_1),\ P_2(x_2,\ y_2)$ on $ C$. (1) Let $ H_i\ (i \equal{} 1,\ 2)$ be the intersection points of the line passing through $ P_i\ (i \equal{} 1,\ 2)$, parallel to $ x$ axis and the line $ y \equal{} x$. Show that the area of $ \triangle{OP_1H_1}$ and $ \triangle{OP_2H_2}$ are equal. (2) Let $ x_1 < x_2$. Express the area of the figure bounded by the part of $ x_1\leq x\leq x_2$ for $ C$ and line segments $ P_1O,\ P_2O$ in terms of $ y_1,\ y_2$.

Kvant 2024, M2786

There are $100$ white points on a circle. Asya and Borya play the following game: they alternate, starting with Asya, coloring a white point in green or blue. Asya wants to obtain as much as possible pairs of adjacent points of distinct colors, while Borya wants these pairs to be as less as possible. What is the maximal number of such pairs Asya can guarantee to obtain, no matter how Borya plays.

KoMaL A Problems 2022/2023, A. 841

Find all non-negative integer solutions of the equation $2^a+p^b=n^{p-1}$, where $p$ is a prime number. Proposed by [i]Máté Weisz[/i], Cambridge

2020 Stars of Mathematics, 4

Prove that, if every three consecutive vertices of a convex $n{}$-gon, $n\geqslant 4$, span a triangle of area at least 1, then the area of the $n{}$-gon is (strictly) greater than $(n\log_2 n)/4-1/2.$ [i]Radu Bumbăcea & Călin Popescu[/i]

2009 Singapore Team Selection Test, 2

Tags: inequalities
If $a$, $b$ ,$c$ are three positive real numbers such that $ab+bc+ca = 1$, prove that \[ \sqrt[3]{ \frac{1}{a} + 6b} + \sqrt[3]{\frac{1}{b} + 6c} + \sqrt[3]{\frac{1}{c} + 6a } \leq \frac{1}{abc}. \]

2006 Iran MO (3rd Round), 3

Let $C$ be a (probably infinite) family of subsets of $\mathbb{N}$ such that for every chain $C_{1}\subset C_{2}\subset \ldots$ of members of $C$, there is a member of $C$ containing all of them. Show that there is a member of $C$ such that no other member of $C$ contains it!

2014 JHMMC 7 Contest, 7

Tags: quick nt
How many digits could possibly be the last digit of a perfect square?

2015 Germany Team Selection Test, 2

A positive integer $n$ is called [i]naughty[/i] if it can be written in the form $n=a^b+b$ with integers $a,b \geq 2$. Is there a sequence of $102$ consecutive positive integers such that exactly $100$ of those numbers are naughty?

1997 Austrian-Polish Competition, 9

Given a parallelepiped $P$, let $V_P$ be its volume, $S_P$ the area of its surface and $L_P$ the sum of the lengths of its edges. For a real number $t \ge 0$, let $P_t$ be the solid consisting of all points $X$ whose distance from some point of $P$ is at most $t$. Prove that the volume of the solid $P_t$ is given by the formula $V(P_t) =V_P + S_Pt + \frac{\pi}{4} L_P t^2 + \frac{4\pi}{3} t^3$.

2005 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$, incenter $I$ and centroid $S$, and let $d$ be the diameter of the circumcircle of triangle $ABC$. Prove the inequality \[9\cdot HS^2+4\left(AH\cdot AI+BH\cdot BI+CH\cdot CI\right)\geq 3d^2,\] and determine when equality holds.

2010 Junior Balkan Team Selection Tests - Moldova, 2

Tags: algebra
The positive real numbers $x$ and $y$ satisfy the relation $x + y = 3 \sqrt{xy}$. Find the value of the numerical expression $$E=\left| \frac{x-y}{x+y}+\frac{x^2-y^2}{x^2+y^2}+\frac{x^3-y^3}{x^3+y^3}\right|.$$

2023 Stanford Mathematics Tournament, 8

Tags:
Define the Fibonacci numbers via $F_0=0$, $f_1=1$, and $F_{n-1}+F_{n-2}$. Olivia flips two fair coins at the same time, repeatedly, until she has flipped a tails on both, not necessarily on the same throw. She records the number of pairs of flips $c$ until this happens (not including the last pair, so if on the last flip both coins turned up tails $c$ would be $0$). What is the expected value $F_c$?

2015 Putnam, A6

Let $n$ be a positive integer. Suppose that $A,B,$ and $M$ are $n\times n$ matrices with real entries such that $AM=MB,$ and such that $A$ and $B$ have the same characteristic polynomial. Prove that $\det(A-MX)=\det(B-XM)$ for every $n\times n$ matrix $X$ with real entries.

2017 Harvard-MIT Mathematics Tournament, 5

Tags:
Kelvin the Frog was bored in math class one day, so he wrote all ordered triples $(a, b, c)$ of positive integers such that $abc=2310$ on a sheet of paper. Find the sum of all the integers he wrote down. In other words, compute $$\sum_{\stackrel{abc=2310}{a,b,c\in \mathbb{N}}} (a+b+c),$$ where $\mathbb{N}$ denotes the positive integers.

2022 Purple Comet Problems, 6

Tags:
At Ignus School there are $425$ students. Of these students $351$ study mathematics, $71$ study Latin, and $203$ study chemistry. There are $199$ students who study more than one of these subjects, and $8$ students who do not study any of these subjects. Find the number of students who study all three of these subjects.

2009 AMC 10, 6

Kiana has two older twin brothers. The product of their ages is $ 128$. What is the sum of their three ages? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 18\qquad \textbf{(E)}\ 24$

2017 Mediterranean Mathematics Olympiad, Problem 3

A set $S$ of integers is Balearic, if there are two (not necessarily distinct) elements $s,s'\in S$ whose sum $s+s'$ is a power of two; otherwise it is called a non-Balearic set. Find an integer $n$ such that $\{1,2,\ldots,n\}$ contains a 99-element non-Balearic set, whereas all the 100-element subsets are Balearic.

2008 AMC 12/AHSME, 9

Points $ A$ and $ B$ are on a circle of radius $ 5$ and $ AB\equal{}6$. Point $ C$ is the midpoint of the minor arc $ AB$. What is the length of the line segment $ AC$? $ \textbf{(A)}\ \sqrt{10} \qquad \textbf{(B)}\ \frac{7}{2} \qquad \textbf{(C)}\ \sqrt{14} \qquad \textbf{(D)}\ \sqrt{15} \qquad \textbf{(E)}\ 4$

2014 SDMO (Middle School), 5

Tags:
Below is a net consisting of $3$ squares, $4$ equilateral triangles, and $1$ regular hexagon. Each polygon has side length $1$. When we fold this net to form a polyhedron, what is the volume of the polyhedron? (This figure is called a "triangular cupola".) Net: [asy] pair A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P; A = origin; B = (0,3); C = 3*dir(150); D = (0,1); E = (0,2); F = C+2*dir(30); G = C+dir(30); H = 2*dir(150); I = dir(150); J = (1,1); K = J+dir(30); L = (1,2); M = F+dir(120); N = G+dir(120); O = H+dir(240); P = I+dir(240); draw(A--B--C--cycle); draw(D--E--F--G--H--I--cycle); draw(D--E--L--J--cycle); draw(F--G--N--M--cycle); draw(H--I--P--O--cycle); draw(J--K--L--cycle); [/asy] Resulting polyhedron: [img]https://upload.wikimedia.org/wikipedia/commons/9/93/Triangular_cupola.png[/img]

1992 IMO Shortlist, 17

Let $ \alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer $ n.$ Prove that: (a) the inequality $ \alpha(n) (n^2 ) \leq \frac{1}{2} \alpha(n)(\alpha(n) + 1)$ holds; (b) the above inequality is an equality for infinitely many positive integers, and (c) there exists a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i }$ goes to zero as $ i$ goes to $ \infty.$ [i]Alternative problem:[/i] Prove that there exists a sequence a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i )}$ (d) $ \infty;$ (e) an arbitrary real number $ \gamma \in (0,1)$; (f) an arbitrary real number $ \gamma \geq 0$; as $ i$ goes to $ \infty.$

1992 AMC 12/AHSME, 26

Tags: geometry
Semicircle $\stackrel{\frown}{AB}$ has center $C$ and radius $1$. Point $D$ is on $\stackrel{\frown}{AB}$ and $\overline{CD} \perp \overline{AB}$. Extend $\overline{BD}$ and $\overline{AD}$ to $E$ and $F$, respectively, so that circular arcs $\stackrel{\frown}{AE}$ and $\stackrel{\frown}{BF}$ have $B$ and $A$ as their respective centers. Circular arc $\stackrel{\frown}{EF}$ has center $D$. The area of the shaded "smile", $AEFBDA$, is [asy] size(200); defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(-1,0), B=(1,0), D=(0,-1), C=(0,0), E=(1-sqrt(2),-sqrt(2)), F=(-1+sqrt(2),-sqrt(2)); fill(Arc((1,0),2,180,225)--Arc((0,-1),(2-sqrt(2)),225,315)--Arc((-1,0),2,315,360)--Arc((0,0),1,360,180)--cycle,mediumgray); draw(A--B^^C--D^^A--F^^B--E); draw(Arc((1,0),2,180,225)--Arc((0,-1),(2-sqrt(2)),225,315)--Arc((-1,0),2,315,360)--Arc((0,0),1,360,180)); label("$A$",A,N); label("$B$",B,N); label("$C$",C,N); label("$D$",(-0.1,-.7)); label("$E$",E,SW); label("$F$",F,SE); [/asy] $ \textbf{(A)}\ (2 - \sqrt{2})\pi\qquad\textbf{(B)}\ 2\pi - \pi\sqrt{2} - 1\qquad\textbf{(C)}\ \left(1 - \frac{\sqrt{2}}{2}\right)\pi\qquad\textbf{(D)}\ \frac{5\pi}{2} - \pi\sqrt{2} - 1\qquad\textbf{(E)}\ (3 - 2\sqrt{2})\pi $

2016 BMT Spring, 11

Tags: circles , ratio , geometry
Circles $C_1$ and $C_2$ intersect at points $X$ and $Y$ . Point $A$ is a point on $C_1$ such that the tangent line with respect to $C_1$ passing through $A$ intersects $C_2$ at $B$ and $C$, with $A$ closer to $B$ than $C$, such that $2016 \cdot AB = BC$. Line $XY$ intersects line $AC$ at $D$. If circles $C_1$ and $C_2$ have radii of $20$ and $16$, respectively, find $\sqrt{1+BC/BD}$.

2007 Junior Balkan Team Selection Tests - Romania, 2

There are given the integers $1 \le m < n$. Consider the set $M = \{ (x,y);x,y \in \mathbb{Z_{+}}, 1 \le x,y \le n \}$. Determine the least value $v(m,n)$ with the property that for every subset $P \subseteq M$ with $|P| = v(m,n)$ there exist $m+1$ elements $A_{i}= (x_{i},y_{i}) \in P, i = 1,2,...,m+1$, for which the $x_{i}$ are all distinct, and $y_{i}$ are also all distinct.