This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 MIG, 1

Tags:
Evaluate $1 + 2 + 4 + 7$ $\textbf{(A) }14\qquad\textbf{(B) }15\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

2020 Iran Team Selection Test, 3

Given a triangle $ABC$ with circumcircle $\Gamma$. Points $E$ and $F$ are the foot of angle bisectors of $B$ and $C$, $I$ is incenter and $K$ is the intersection of $AI$ and $EF$. Suppose that $T$ be the midpoint of arc $BAC$. Circle $\Gamma$ intersects the $A$-median and circumcircle of $AEF$ for the second time at $X$ and $S$. Let $S'$ be the reflection of $S$ across $AI$ and $J$ be the second intersection of circumcircle of $AS'K$ and $AX$. Prove that quadrilateral $TJIX$ is cyclic. [i]Proposed by Alireza Dadgarnia and Amir Parsa Hosseini[/i]

2012 Math Hour Olympiad, 8-10

[u]Round 1 [/u] [b]p1.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests. One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor. Now Pooh can tell how many knights are at the table. Can you? [b]p2.[/b] Harry has an $8 \times 8$ board filled with the numbers $1$ and $-1$, and the sum of all $64$ numbers is $0$. A magical cut of this board is a way of cutting it into two pieces so that the sum of the numbers in each piece is also $0$. The pieces should not have any holes. Prove that Harry will always be able to find a magical cut of his board. (The picture shows an example of a proper cut.) [img]https://cdn.artofproblemsolving.com/attachments/4/b/98dec239cfc757e6f2996eef7876cbfd79d202.png[/img] [b]p3.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. [b]p4.[/b] $120$ bands are participating in this year's Northwest Grunge Rock Festival, and they have $119$ fans in total. Each fan belongs to exactly one fan club. A fan club is called crowded if it has at least $15$ members. Every morning, all the members of one of the crowded fan clubs start arguing over who loves their favorite band the most. As a result of the fighting, each of them leaves the club to join another club, but no two of them join the same one. Is it true that, no matter how the clubs are originally arranged, all these arguments will eventually stop? [b]p5.[/b] In Infinite City, the streets form a grid of squares extending infinitely in all directions. Bonnie and Clyde have just robbed the Infinite City Bank, located at the busiest intersection downtown. Bonnie sets off heading north on her bike, and, $30$ seconds later, Clyde bikes after her in the same direction. They each bike at a constant speed of $1$ block per minute. In order to throw off any authorities, each of them must turn either left or right at every intersection. If they continue biking in this manner, will they ever be able to meet? [u]Round 2 [/u] [b]p6.[/b] In a certain herd of $33$ cows, each cow weighs a whole number of pounds. Farmer Dan notices that if he removes any one of the cows from the herd, it is possible to split the remaining $32$ cows into two groups of equal total weight, $16$ cows in each group. Show that all $33$ cows must have the same weight. [b]p7.[/b] Katniss is thinking of a positive integer less than $100$: call it $x$. Peeta is allowed to pick any two positive integers $N$ and $M$, both less than $100$, and Katniss will give him the greatest common divisor of $x+M$ and $N$ . Peeta can do this up to seven times, after which he must name Katniss' number $x$, or he will die. Can Peeta ensure his survival? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Today's Calculation Of Integral, 729

Evaluate $\int_1^e \frac{\ln x-1}{x^2-(\ln x)^2}dx.$

1955 Miklós Schweitzer, 10

Tags:
[b]10.[/b] Show that if a convex polyhedron has vertices of regular distribution and congruent faces, then it is regular. (A system of points is said to be of regular distribution if every point of the system can be transformed into any other point by congruent transformations mapping the system onto itself.) [b](G. 11)[/b]

2021 Thailand Online MO, P8

Let $\mathbb N$ be the set of positive integers. Determine all functions $f:\mathbb N\times\mathbb N\to\mathbb N$ that satisfy both of the following conditions: [list] [*]$f(\gcd (a,b),c) = \gcd (a,f(c,b))$ for all $a,b,c \in \mathbb{N}$. [*]$f(a,a) \geq a$ for all $a \in \mathbb{N}$. [/list]

1999 Harvard-MIT Mathematics Tournament, 3

Tags:
Alex is stuck on a platform floating over an abyss at $1$ ft/s. An evil physicist has arranged for the platform to fall in (taking Alex with it) after traveling $100$ft. One minute after the platform was launched, Edward arrives with a second platform capable of floating all the way across the abyss. He calculates for 5 seconds, then launches the second platform in such a way as to maximize the time that one end of Alex's platform is between the two ends of the new platform, thus giving Alex as much time as possible to switch. If both platforms are $5$ ft long and move with constant velocity once launched, what is the speed of the second platform (in ft/s)?

1955 Miklós Schweitzer, 8

[b]8.[/b] Show that on any tetrahedron there can be found three acute bihedral angles such that the faces including these angles count among them all faces of tetrahedron. [b](G. 10)[/b]

2017 NIMO Problems, 8

Tags:
Let $S$ be the set of all permutations of $\{1, 2, 3, 4, 5\}$. For $s = (a_1, a_2,a_3,a_4,a_5) \in S$, define $\text{nimo}(s)$ to be the sum of all indices $i \in \{1, 2, 3, 4\}$ for which $a_i > a_{i+1}$. For instance, if $s=(2,3,1,5,4)$, then $\text{nimo}(s)=2+4=6$. Compute \[\sum_{s\in S}2^{\text{nimo}(s)}.\] [i]Proposed by Mehtaab Sawhney[/i]

Mathley 2014-15, 6

Let the inscribed circle $(I)$ of the triangle $ABC$, touches $CA, AB$ at $E, F$. $P$ moves along $EF$, $PB$ cuts $CA$ at $M, MI$ cuts the line, through $C$ perpendicular to $AC$, at $N$. Prove that the line through $N$ is perpendicular to $PC$ crosses a fixed point as $P$ moves. Tran Quang Hung, High School of Natural Sciences, Hanoi National University

2005 USAMTS Problems, 3

Points $A, B,$ and $C$ are on a circle such that $\triangle ABC$ is an acute triangle. $X, Y ,$ and $Z$ are on the circle such that $AX$ is perpendicular to $BC$ at $D$, $BY$ is perpendicular to $AC$ at $E$, and $CZ$ is perpendicular to $AB$ at $F$. Find the value of \[ \frac{AX}{AD}+\frac{BY}{BE}+\frac{CZ}{CF}, \] and prove that this value is the same for all possible $A, B, C$ on the circle such that $\triangle ABC$ is acute. [asy] pathpen = linewidth(0.7); pair B = (0,0), C = (10,0), A = (2.5,8); path cir = circumcircle(A,B,C); pair D = foot(A,B,C), E = foot(B,A,C), F = foot(C,A,B), X = IP(D--2*D-A,cir), Y = IP(E--2*E-B,cir), Z = IP(F--2*F-C,cir); D(MP("A",A,N)--MP("B",B,SW)--MP("C",C,SE)--cycle); D(cir); D(A--MP("X",X)); D(B--MP("Y",Y,NE)); D(C--MP("Z",Z,NW)); D(rightanglemark(B,F,C,12)); D(rightanglemark(A,D,B,12)); D(rightanglemark(B,E,C,12));[/asy]

2007 Postal Coaching, 5

Let $P$ be an interior point of triangle $ABC$ such that $\angle BPC = \angle CPA =\angle APB = 120^o$. Prove that the Euler lines of triangles $APB,BPC,CPA$ are concurrent.

2017 Princeton University Math Competition, 15

How many ordered pairs of positive integers $(x, y)$ satisfy $yx^y = y^{2017}$?

2009 Dutch IMO TST, 2

Let $ABC$ be a triangle, $P$ the midpoint of $BC$, and $Q$ a point on segment $CA$ such that $|CQ| = 2|QA|$. Let $S$ be the intersection of $BQ$ and $AP$. Prove that $|AS| = |SP|$.

1970 AMC 12/AHSME, 19

The sum of an infinite geometric series with common ratio $r$ such that $|r|<1$, is $15$, and the sum of the squares of the terms of this series is $45$. The first term of the series is $\textbf{(A) }12\qquad\textbf{(B) }10\qquad\textbf{(C) }5\qquad\textbf{(D) }3\qquad \textbf{(E) }2$

1976 IMO Shortlist, 1

Let $ABC$ be a triangle with bisectors $AA_1,BB_1, CC_1$ ($A_1 \in BC$, etc.) and $M$ their common point. Consider the triangles $MB_1A, MC_1A,MC_1B,MA_1B,MA_1C,MB_1C$, and their inscribed circles. Prove that if four of these six inscribed circles have equal radii, then $AB = BC = CA.$

1965 Spain Mathematical Olympiad, 8

Tags: series , geometry
Let be $\gamma_1$ a circumference of radius $r$ and $P$ an exterior point that is at distance $a$ from the centre of $\gamma_1$. We build two tangent lines $r,s$ to $\gamma_1$ from $P$ and $\gamma_2$ is constructed as a smaller circumference, tangent to both lines and, also, tangent to $\gamma_1$. We construct inductively $\gamma_{n+1}$ as a tangent circumference to $\gamma_{n}$ and, also, tangent to $r$ and $s$. Determine: a) The radius of $\gamma_2$. b) The radius of $\gamma_n$. c) The sum of the lengths of $\gamma_1, \gamma_2, \gamma_3, ...$.

2019 Harvard-MIT Mathematics Tournament, 2

Tags: hmmt , rectangle , geometry
In rectangle $ABCD$, points $E$ and $F$ lie on sides $AB$ and $CD$ respectively such that both $AF$ and $CE$ are perpendicular to diagonal $BD$. Given that $BF$ and $DE$ separate $ABCD$ into three polygons with equal area, and that $EF = 1$, find the length of $BD$.

2005 Taiwan TST Round 1, 1

More than three quarters of the circumference of a circle is colored black. Prove that there exists a rectangle such that all of its vertices are black. Actually the result holds if "three quarters" is replaced by "one half"...

2009 Sharygin Geometry Olympiad, 3

The cirumradius and the inradius of triangle $ABC$ are equal to $R$ and $r, O, I$ are the centers of respective circles. External bisector of angle $C$ intersect $AB$ in point $P$. Point $Q$ is the projection of $P$ to line $OI$. Find distance $OQ.$ (A.Zaslavsky, A.Akopjan)

2003 Pan African, 1

Let $\mathbb{N}_0=\{0,1,2 \cdots \}$. Does there exist a function $f: \mathbb{N}__0 \to \mathbb{N}_0$ such that: \[ f^{2003}(n)=5n, \forall n \in \mathbb{N}_0 \] where we define: $f^1(n)=f(n)$ and $f^{k+1}(n)=f(f^k(n))$, $\forall k \in \mathbb{N}_0$?

2004 AMC 10, 23

Each face of a cube is painted either red or blue, each with probability $ 1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color? $ \textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac{5}{16} \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac{7}{16} \qquad \textbf{(E)}\ \frac12$

2002 Flanders Junior Olympiad, 3

Is it possible to number the $8$ vertices of a cube from $1$ to $8$ in such a way that the value of the sum on every edge is different?

1973 AMC 12/AHSME, 24

The check for a luncheon of 3 sandwiches, 7 cups of coffee and one piece of pie came to $ \$3.15$. The check for a luncheon consisting of 4 sandwiches, 10 cups of coffee and one piece of pie came to $ \$4.20$ at the same place. The cost of a luncheon consisting of one sandwich, one cup of coffee, and one piece of pie at the same place will come to $ \textbf{(A)}\ \$1.70 \qquad \textbf{(B)}\ \$1.65 \qquad \textbf{(C)}\ \$1.20 \qquad \textbf{(D)}\ \$1.05 \qquad \textbf{(E)}\ \$0.95$

2010 Iran Team Selection Test, 3

Find all two-variable polynomials $p(x,y)$ such that for each $a,b,c\in\mathbb R$: \[p(ab,c^2+1)+p(bc,a^2+1)+p(ca,b^2+1)=0\]