This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1986 All Soviet Union Mathematical Olympiad, 426

Find all the natural numbers equal to the square of its divisors number.

2020 Durer Math Competition Finals, 14

How many ways are there to fill in the $ 8$ spots in the picture with letters $A, B, C$ and $D$, using two copies of each letter, such that the spots with identical letters can be connected with a continuous line that stays within the box, without these four lines crossing each other or going through other spots? The lines do not have to be straight. [img]https://cdn.artofproblemsolving.com/attachments/f/f/66c30eaf6fa3b42c5197d0e3a3d59e9160bb8e.png[/img]

2020 Taiwan TST Round 3, 3

Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying \[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\] for all integers $x$ and $y$. For such a function, we say that an integer $v$ is [i]f-rare[/i] if the set \[X_v=\{x\in\mathbb Z:f(x)=v\}\] is finite and nonempty. (a) Prove that there exists such a function $f$ for which there is an $f$-rare integer. (b) Prove that no such function $f$ can have more than one $f$-rare integer. [i]Netherlands[/i]

2014 Finnish National High School Mathematics, 2

The center of the circumcircle of the acute triangle $ABC$ is $M$, and the circumcircle of $ABM$ meets $BC$ and $AC$ at $P$ and $Q$ ($P\ne B$). Show that the extension of the line segment $CM$ is perpendicular to $PQ$.

2010 Olympic Revenge, 1

Prove that the number of ordered triples $(x, y, z)$ such that $(x+y+z)^2 \equiv axyz \mod{p}$, where $gcd(a, p) = 1$ and $p$ is prime is $p^2 + 1$.

2023 MOAA, 1

Tags:
Compute $$\left(20+\frac{1}{23}\right)\cdot\left(23+\frac{1}{20}\right)-\left(20-\frac{1}{23}\right)\cdot\left(23-\frac{1}{20}\right)$$ [i]Proposed by Andy Xu[/i]

2008 Stanford Mathematics Tournament, 11

Tags:
Simplify: $ \sqrt [3]{\frac {17\sqrt7 \plus{} 45}{4}}$

1995 Czech and Slovak Match, 6

Find all triples $(x; y; p)$ of two non-negative integers $x, y$ and a prime number p such that $ p^x-y^p=1 $

2018 IMO Shortlist, N6

Let $f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \}$ be a function such that $f(m + n) | f(m) + f(n) $ for all pairs $m,n$ of positive integers. Prove that there exists a positive integer $c > 1$ which divides all values of $f$.

2020 Korean MO winter camp, #7

Tags: algebra
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $2f(x^2+y^2)=(x+f(y))^2+f(x-f(y))^2$ for all $x,y\in\mathbb{R}$.

1981 Canada National Olympiad, 3

Given a finite collection of lines in a plane $P$, show that it is possible to draw an arbitrarily large circle in $P$ which does not meet any of them. On the other hand, show that it is possible to arrange a countable infinite sequence of lines (first line, second line, third line, etc.) in $P$ so that every circle in $P$ meets at least one of the lines. (A point is not considered to be a circle.)

CNCM Online Round 2, 5

Tags:
Consider a regular $n$-gon of side length 1. For each of its vertices, a circle of radius one is drawn centered at that vertex. The resulting figure, consisting of the polygon and the $n$ circles, partitions the plane into $f(n)$ finite, bounded regions. Find $$\sum_{n=3}^{25} f(n).$$ The first term corresponding to $i=3$ is shown; each of the various colors corresponds to a distinct region with $f(3)=10$. Note that the lines corresponding to the polygon are treated no differently than the arcs corresponding to the circles in counting regions. Proposed by Hari Desikan (HariDesikan)

2010 Albania National Olympiad, 2

Tags: induction , algebra
We denote $N_{2010}=\{1,2,\cdots,2010\}$ [b](a)[/b]How many non empty subsets does this set have? [b](b)[/b]For every non empty subset of the set $N_{2010}$ we take the product of the elements of the subset. What is the sum of these products? [b](c)[/b]Same question as the [b](b)[/b] part for the set $-N_{2010}=\{-1,-2,\cdots,-2010\}$. Albanian National Mathematical Olympiad 2010---12 GRADE Question 2.

2016 Estonia Team Selection Test, 1

There are $k$ heaps on the table, each containing a different positive number of stones. Juri and Mari make moves alternatingly, Juri starts. On each move, the player making the move has to pick a heap and remove one or more stones in it from the table; in addition, the player is allowed to distribute any number of remaining stones from that heap in any way between other non-empty heaps. The player to remove the last stone from the table wins. For which positive integers $k$ does Juri have a winning strategy for any initial state that satisfies the conditions?

2007 Sharygin Geometry Olympiad, 14

In a trapezium with bases $AD$ and $BC$, let $P$ and $Q$ be the middles of diagonals $AC$ and $BD$ respectively. Prove that if $\angle DAQ = \angle CAB$ then $\angle PBA = \angle DBC$.

2024 HMNT, 6

Tags: guts
The vertices of a cube are labeled with the integers $1$ through $8,$ with each used exactly once. Let $s$ be the maximum sum of the labels of two edge-adjacent vertices. Compute the minimum possible value of $s$ over all such labelings.

2009 AMC 8, 13

Tags: probability
A three-digit integer contains one of each of the digits $ 1$, $ 3$, and $ 5$. What is the probability that the integer is divisible by $ 5$? $ \textbf{(A)}\ \frac{1}{6} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{1}{2} \qquad \textbf{(D)}\ \frac{2}{3} \qquad \textbf{(E)}\ \frac{5}{6}$

2014 Kazakhstan National Olympiad, 3

The triangle $ABC$ is inscribed in a circle $w_1$. Inscribed in a triangle circle touchs the sides $BC$ in a point $N$. $w_2$ — the circle inscribed in a segment $BAC$ circle of $w_1$, and passing through a point $N$. Let points $O$ and $J$ — the centers of circles $w_2$ and an extra inscribed circle (touching side $BC$) respectively. Prove, that lines $AO$ and $JN$ are parallel.

2001 Romania National Olympiad, 4

Tags: geometry
Consider the acute angle $ABC$. On the half-line $BC$ we consider the distinct points $P$ and $Q$ whose projections onto the line $AB$ are the points $M$ and $N$. Knowing that $AP=AQ$ and $AM^2-AN^2=BN^2-BM^2$, find the angle $ABC$.

1987 Flanders Math Olympiad, 4

Show that for $p>1$ we have \[\lim_{n\rightarrow+\infty}\frac{1^p+2^p+...+(n-1)^p+n^p+(n-1)^p+...+2^p+1^p}{n^2} = +\infty\] Find the limit if $p=1$.

2011 Switzerland - Final Round, 3

For positive integers $m$ and $n$, find the smalles possible value of $|2011^m-45^n|$. [i](Swiss Mathematical Olympiad, Final round, problem 3)[/i]

1999 ITAMO, 5

There is a village of pile-built dwellings on a lake, set on the gridpoints of an $m \times n$ rectangular grid. Each dwelling is connected by exactly $p$ bridges to some of the neighboring dwellings (diagonal connections are not allowed, two dwellings can be connected by more than one bridge). Determine for which values $m,n, p$ it is possible to place the bridges so that from any dwelling one can reach any other dwelling.

2024/2025 TOURNAMENT OF TOWNS, P1

Tags: geometry
Consider a circumscribed pentagon ${ABCDE}$ . Its incenter lies on the diagonal ${AC}$ . Prove that $$ {AB} + {BC} > {CD} + {DE} + {EA}. $$ Egor Bakaev

2018 Cyprus IMO TST, Source

[url=https://artofproblemsolving.com/community/c677808][b]Cyprus IMO TST 2018[/b][/url] [url=https://artofproblemsolving.com/community/c6h1666662p10591751][b]Problem 1.[/b][/url] Determine all integers $n \geq 2$ for which the number $11111$ in base $n$ is a perfect square. [url=https://artofproblemsolving.com/community/c6h1666663p10591753][b]Problem 2.[/b][/url] Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$. [url=https://artofproblemsolving.com/community/c6h1666660p10591747][b]Problem 3.[/b][/url] Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression $$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$obtains its minimum value. [url=https://artofproblemsolving.com/community/c6h1666661p10591749][b]Problem 4.[/b][/url] Let $\Lambda= \{1, 2, \ldots, 2v-1,2v\}$ and $P=\{\alpha_1, \alpha_2, \ldots, \alpha_{2v-1}, \alpha_{2v}\}$ be a permutation of the elements of $\Lambda$. (a) Prove that $$\sum_{i=1}^v \alpha_{2i-1}\alpha_{2i} \leq \sum_{i=1}^v (2i-1)2i.$$(b) Determine the largest positive integer $m$ such that we can partition the $m\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence: $$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$

2006 MOP Homework, 4

Let $n$ be a positive integer, and let $p$ be a prime number. Prove that if $p^p | n!$, then $p^{p+1} | n!$.