This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 JBMO TST-Turkey, 1

Tags: algebra
Let $a, b, c$ be distinct real numbers and $x$ be a real number. Given that three numbers among $ax^2+bx+c, ax^2+cx+b, bx^2+cx+a, bx^2+ax+c, cx^2+ax+b, cx^2+bx+a$ coincide, prove that $x=1$.

2001 239 Open Mathematical Olympiad, 8

In a graph with $2n-1$ vertices throwing out any vertex the remaining graph has a complete subgraph with $n$ vertices. Prove that the initial graph has a complete subgraph with $n+1$ vertices.

2019 Canadian Mathematical Olympiad Qualification, 8

For $t \ge 2$, defi ne $S(t)$ as the number of times $t$ divides into $t!$. We say that a positive integer $t$ is a [i]peak[/i] if $S(t) > S(u)$ for all values of $u < t$. Prove or disprove the following statement: For every prime $p$, there is an integer $k$ for which $p$ divides $k$ and $k$ is a peak.

2007 F = Ma, 19

A non-Hookian spring has force $F = -kx^2$ where $k$ is the spring constant and $x$ is the displacement from its unstretched position. For the system shown of a mass $m$ connected to an unstretched spring initially at rest, how far does the spring extend before the system momentarily comes to rest? Assume that all surfaces are frictionless and that the pulley is frictionless as well. [asy] size(250); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((0,0)--(0,-1)--(2,-1)--(2+sqrt(3),-2)); draw((2.5,-2)--(4.5,-2),dashed); draw(circle((2.2,-0.8),0.2)); draw((2.2,-0.8)--(1.8,-1.2)); draw((0,-0.6)--(0.6,-0.6)--(0.75,-0.4)--(0.9,-0.8)--(1.05,-0.4)--(1.2,-0.8)--(1.35,-0.4)--(1.5,-0.8)--(1.65,-0.4)--(1.8,-0.8)--(1.95,-0.6)--(2.2,-0.6)); draw((2+0.3*sqrt(3),-1.3)--(2+0.3*sqrt(3)+0.6/2,-1.3+sqrt(3)*0.6/2)--(2+0.3*sqrt(3)+0.6/2+0.2*sqrt(3),-1.3+sqrt(3)*0.6/2-0.2)--(2+0.3*sqrt(3)+0.2*sqrt(3),-1.3-0.2)); //super complex Asymptote code gg draw((2+0.3*sqrt(3)+0.3/2,-1.3+sqrt(3)*0.3/2)--(2.35,-0.6677)); draw(anglemark((2,-1),(2+sqrt(3),-2),(2.5,-2))); label("$30^\circ$",(3.5,-2),NW); [/asy] $ \textbf{(A)}\ \left(\frac{3mg}{2k}\right)^{1/2} $ $ \textbf{(B)}\ \left(\frac{mg}{k}\right)^{1/2} $ $ \textbf{(C)}\ \left(\frac{2mg}{k}\right)^{1/2} $ $ \textbf{(D)}\ \left(\frac{\sqrt{3}mg}{k}\right)^{1/3} $ $ \textbf{(E)}\ \left(\frac{3\sqrt{3}mg}{2k}\right)^{1/3} $

2017-IMOC, A4

Show that for all non-constant functions $f:\mathbb R\to\mathbb R$, there are two real numbers $x,y$ such that $$f(x+f(y))>xf(y)+x.$$

2019 Online Math Open Problems, 29

Tags:
Let $n$ be a positive integer and let $P(x)$ be a monic polynomial of degree $n$ with real coefficients. Also let $Q(x)=(x+1)^2(x+2)^2\dots (x+n+1)^2$. Consider the minimum possible value $m_n$ of $\displaystyle\sum_{i=1}^{n+1} \dfrac{i^2P(i^2)^2}{Q(i)}$. Then there exist positive constants $a,b,c$ such that, as $n$ approaches infinity, the ratio between $m_n$ and $a^{2n} n^{2n+b} c$ approaches $1$. Compute $\lfloor 2019 abc^2\rfloor$. [i]Proposed by Vincent Huang[/i]

2012 Pre - Vietnam Mathematical Olympiad, 3

Let $ABC$ be a triangle with height $AH$. $P$ lies on the circle over 3 midpoint of $AB,BC,CA$ ($P \notin BC$). Prove that the line connect 2 center of $(PBH)$ and $(PCH)$ go through a fixed point. (where $(XYZ)$ be a circumscribed circle of triangle $XYZ$)

2021 BMT, 11

Compute the number of sequences of five positive integers $a_1,..., a_5$ where all $a_i \le 5$ and the greatest common divisor of all five integers is $1$.

1990 IMO Shortlist, 18

Let $ a, b \in \mathbb{N}$ with $ 1 \leq a \leq b,$ and $ M \equal{} \left[\frac {a \plus{} b}{2} \right].$ Define a function $ f: \mathbb{Z} \mapsto \mathbb{Z}$ by \[ f(n) \equal{} \begin{cases} n \plus{} a, & \text{if } n \leq M, \\ n \minus{} b, & \text{if } n >M. \end{cases} \] Let $ f^1(n) \equal{} f(n),$ $ f_{i \plus{} 1}(n) \equal{} f(f^i(n)),$ $ i \equal{} 1, 2, \ldots$ Find the smallest natural number $ k$ such that $ f^k(0) \equal{} 0.$

2016 ASDAN Math Tournament, 2

Two concentric circles have differing radii such that a chord of the outer circle which is tangent to the inner circle has length $18$. Compute the area inside the bigger circle which lies outside of the smaller circle.

2023 Princeton University Math Competition, 8

Tags: geometry
8. Let $\triangle A B C$ be a triangle with sidelengths $A B=5, B C=7$, and $C A=6$. Let $D, E, F$ be the feet of the altitudes from $A, B, C$, respectively. Let $L, M, N$ be the midpoints of sides $B C, C A, A B$, respectively. If the area of the convex hexagon with vertices at $D, E, F, L, M, N$ can be written as $\frac{x \sqrt{y}}{z}$ for positive integers $x, y, z$ with $\operatorname{gcd}(x, z)=1$ and $y$ square-free, find $x+y+z$.

2025 SEEMOUS, P3

Let $A\in\mathcal{M}_n(\mathbb{C})$ such that $A^*A^2 = AA^*$. Prove that $A^2=A$. (Here we denote by $A^*$ the conjugate transpose of $A$.)

2021 Moldova EGMO TST, 3

Prove that $9$ divides $A_n=16^n+4^n-2$ for every nonnegative integer $n$.

Today's calculation of integrals, 849

Evaluate $\int_1^{e^2} \frac{(2x^2+2x+1)e^{x}}{\sqrt{x}}\ dx.$

2005 India IMO Training Camp, 2

Given real numbers $a,\alpha,\beta, \sigma \ and \ \varrho$ s.t. $\sigma, \varrho > 0$ and $\sigma \varrho = \frac{1}{16}$, prove that there exist integers $x$ and $y$ s.t. \[ - \sigma \leq (x+\alpha_(ax + y + \beta ) \leq \varrho \]

2012 NIMO Problems, 3

The expression $\circ \ 1\ \circ \ 2 \ \circ 3 \ \circ \dots \circ \ 2012$ is written on a blackboard. Catherine places a $+$ sign or a $-$ sign into each blank. She then evaluates the expression, and finds the remainder when it is divided by 2012. How many possible values are there for this remainder? [i]Proposed by Aaron Lin[/i]

2022 China National Olympiad, 4

A conference is attended by $n (n\ge 3)$ scientists. Each scientist has some friends in this conference (friendship is mutual and no one is a friend of him/herself). Suppose that no matter how we partition the scientists into two nonempty groups, there always exist two scientists in the same group who are friends, and there always exist two scientists in different groups who are friends. A proposal is introduced on the first day of the conference. Each of the scientists' opinion on the proposal can be expressed as a non-negative integer. Everyday from the second day onwards, each scientists' opinion is changed to the integer part of the average of his/her friends' opinions from the previous day. Prove that after a period of time, all scientists have the same opinion on the proposal.

2021 Balkan MO Shortlist, C2

Let $K$ and $N > K$ be fixed positive integers. Let $n$ be a positive integer and let $a_1, a_2, ..., a_n$ be distinct integers. Suppose that whenever $m_1, m_2, ..., m_n$ are integers, not all equal to $0$, such that $\mid{m_i}\mid \le K$ for each $i$, then the sum $$\sum_{i = 1}^{n} m_ia_i$$ is not divisible by $N$. What is the largest possible value of $n$? [i]Proposed by Ilija Jovcevski, North Macedonia[/i]

2009 China Team Selection Test, 3

Let $ x_{1},x_{2},\cdots,x_{m},y_{1},y_{2},\cdots,y_{n}$ be positive real numbers. Denote by $ X \equal{} \sum_{i \equal{} 1}^{m}x,Y \equal{} \sum_{j \equal{} 1}^{n}y.$ Prove that $ 2XY\sum_{i \equal{} 1}^{m}\sum_{j \equal{} 1}^{n}|x_{i} \minus{} y_{j}|\ge X^2\sum_{j \equal{} 1}^{n}\sum_{l \equal{} 1}^{n}|y_{i} \minus{} y_{l}| \plus{} Y^2\sum_{i \equal{} 1}^{m}\sum_{k \equal{} 1}^{m}|x_{i} \minus{} x_{k}|$

2017 Greece JBMO TST, Source

[url=https://artofproblemsolving.com/community/c675547][b]Greece JBMO TST 2017[/b][/url] [url=http://artofproblemsolving.com/community/c6h1663730p10567608][b]Problem 1[/b][/url]. Positive real numbers $a,b,c$ satisfy $a+b+c=1$. Prove that $$(a+1)\sqrt{2a(1-a)} + (b+1)\sqrt{2b(1-b)} + (c+1)\sqrt{2c(1-c)} \geq 8(ab+bc+ca).$$ Also, find the values of $a,b,c$ for which the equality happens. [url=http://artofproblemsolving.com/community/c6h1663731p10567619][b]Problem 2[/b][/url]. Let $ABC$ be an acute-angled triangle inscribed in a circle $\mathcal C (O, R)$ and $F$ a point on the side $AB$ such that $AF < AB/2$. The circle $c_1(F, FA)$ intersects the line $OA$ at the point $A'$ and the circle $\mathcal C$ at $K$. Prove that the quadrilateral $BKFA'$ is cyclic and its circumcircle contains point $O$. [url=http://artofproblemsolving.com/community/c6h1663732p10567627][b]Problem 3[/b][/url]. Prove that for every positive integer $n$, the number $A_n = 7^{2n} -48n - 1$ is a multiple of $9$. [url=http://artofproblemsolving.com/community/c6h1663734p10567640][b]Problem 4[/b][/url]. Let $ABC$ be an equilateral triangle of side length $a$, and consider $D$, $E$ and $F$ the midpoints of the sides $(AB), (BC)$, and $(CA)$, respectively. Let $H$ be the the symmetrical of $D$ with respect to the line $BC$. Color the points $A, B, C, D, E, F, H$ with one of the two colors, red and blue. [list=1] [*] How many equilateral triangles with all the vertices in the set $\{A, B, C, D, E, F, H\}$ are there? [*] Prove that if points $B$ and $E$ are painted with the same color, then for any coloring of the remaining points there is an equilateral triangle with vertices in the set $\{A, B, C, D, E, F, H\}$ and having the same color. [*] Does the conclusion of the second part remain valid if $B$ is blue and $E$ is red? [/list]

Putnam 1938, B4

Tags:
The parabola $P$ has focus a distance $m$ from the directrix. The chord $AB$ is normal to $P$ at $A.$ What is the minimum length for $AB?$

1999 Czech And Slovak Olympiad IIIA, 5

Given an acute angle $APX$ in the plane, construct a square $ABCD$ such that $P$ lies on the side $BC$ and ray $PX$ meets $CD$ in a point $Q$ such that $AP$ bisects the angle $BAQ$.

2013 Tournament of Towns, 3

A point in the plane is called a node if both its coordinates are integers. Consider a triangle with vertices at nodes containing at least two nodes inside. Prove that there exists a pair of internal nodes such that a straight line connecting them either passes through a vertex or is parallel to side of the triangle.

1999 National Olympiad First Round, 5

Tags: geometry
Let $ ABC$ be an isosceles triangle with $ \left|AB\right| \equal{} \left|AC\right| \equal{} 10$ and $ \left|BC\right| \equal{} 12$. $ P$ and $ R$ are points on $ \left[BC\right]$ such that $ \left|BP\right| \equal{} \left|RC\right| \equal{} 3$. $ S$ and $ T$ are midpoints of $ \left[AB\right]$ and $ \left[AC\right]$, respectively. If $ M$ and $ N$ are the foot of perpendiculars from $ S$ and $ R$ to $ PT$, then find $ \left|MN\right|$. $\textbf{(A)}\ \frac {9\sqrt {13} }{26} \qquad\textbf{(B)}\ \frac {12 \minus{} 2\sqrt {13} }{13} \qquad\textbf{(C)}\ \frac {5\sqrt {13} \plus{} 20}{13} \qquad\textbf{(D)}\ 15\sqrt {3} \qquad\textbf{(E)}\ \frac {10\sqrt {13} }{13}$

Kvant 2021, M2674

Consider the segment $[0; 1]$. At each step we may split one of the available segments into two new segments and write the product of lengths of these two new segments onto a blackboard. Prove that the sum of the numbers on the blackboard never will exceed $1/2$. [i]Mikhail Lukin[/i]