Found problems: 85335
2012 Princeton University Math Competition, A4 / B6
How many (possibly empty) sets of lattice points $\{P_1, P_2, ... , P_M\}$, where each point $P_i =(x_i, y_i)$ for $x_i
, y_i \in \{0, 1, 2, 3, 4, 5, 6\}$, satisfy that the slope of the line $P_iP_j$ is positive for each $1 \le i < j \le M$ ? An infinite slope, e.g. $P_i$ is vertically above $P_j$ , does not count as positive.
Kvant 2022, M2696
Does there exist a sequence of natural numbers $a_1,a_2,\ldots$ such that the number $a_i+a_j$ has an even number of different prime divisors for any two different natural indices $i{}$ and $j{}$?
[i]From the folklore[/i]
2015 AIME Problems, 9
Let $S$ be the set of all ordered triples of integers $(a_1,a_2,a_3)$ with $1 \le a_1,a_2,a_3 \le 10$. Each ordered triple in $S$ generates a sequence according to the rule $a_n=a_{n-1}\cdot | a_{n-2}-a_{n-3} |$ for all $n\ge 4$. Find the number of such sequences for which $a_n=0$ for some $n$.
1980 Swedish Mathematical Competition, 1
Show that $\log_{10} 2$ is irrational.
1984 IMO Longlists, 3
The opposite sides of the reentrant hexagon $AFBDCE$ intersect at the points $K,L,M$ (as shown in the figure). It is given that $AL = AM = a, BM = BK = b$, $CK = CL = c, LD = DM = d, ME = EK = e, FK = FL = f$.
[img]http://imgur.com/LUFUh.png[/img]
$(a)$ Given length $a$ and the three angles $\alpha, \beta$ and $\gamma$ at the vertices $A, B,$ and $C,$ respectively, satisfying the condition $\alpha+\beta+\gamma<180^{\circ}$, show that all the angles and sides of the hexagon are thereby uniquely determined.
$(b)$ Prove that
\[\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{d}\]
Easier version of $(b)$. Prove that
\[(a + f)(b + d)(c + e)= (a + e)(b + f)(c + d)\]
1959 Putnam, A5
A sparrow, flying horizontally in a straight line, is $50$ feet directly below an eagle and $100$ feet directly above a hawk. Both hawk and eagle fly directly toward the sparrow, reaching it simultaneously. The hawk flies twice as fast as the sparrow. How far does each bird fly? At what rate does the eagle fly?
2015 CCA Math Bonanza, I13
Let $ABCD$ be a tetrahedron such that $AD \perp BD$, $BD \perp CD$, $CD \perp AD$ and $AD=10$, $BD=15$, $CD=20$. Let $E$ and $F$ be points such that $E$ lies on $BC$, $DE \perp BC$, and $ADEF$ is a rectangle. If $S$ is the solid consisting of all points inside $ABCD$ but outside $FBCD$, compute the volume of $S$.
[i]2015 CCA Math Bonanza Individual Round #13[/i]
1990 Balkan MO, 2
The polynomial $P(X)$ is defined by $P(X)=(X+2X^{2}+\ldots +nX^{n})^{2}=a_{0}+a_{1}X+\ldots +a_{2n}X^{2n}$. Prove that $a_{n+1}+a_{n+2}+\ldots +a_{2n}=\frac{n(n+1)(5n^{2}+5n+2)}{24}$.
2008 HMNT, 2
Let $ABC$ be a triangle, and let $M$ be the midpoint of side $AB$. If $AB$ is $17$ units long and $CM$ is $8$ units long, find the maximum possible value of the area of $ABC$.
2016 AIME Problems, 11
Let $P(x)$ be a nonzero polynomial such that $(x-1)P(x+1)=(x+2)P(x)$ for every real $x$, and $\left(P(2)\right)^2 = P(3)$. Then $P(\tfrac72)=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
1956 AMC 12/AHSME, 13
Given two positive integers $ x$ and $ y$ with $ x < y$. The percent that $ x$ is less than $ y$ is:
$ \textbf{(A)}\ \frac {100(y \minus{} x)}{x} \qquad\textbf{(B)}\ \frac {100(x \minus{} y)}{x} \qquad\textbf{(C)}\ \frac {100(y \minus{} x)}{y} \qquad\textbf{(D)}\ 100(y \minus{} x)$
$ \textbf{(E)}\ 100(x \minus{} y)$
2012 Turkmenistan National Math Olympiad, 6
Prove that $1^{2011}+2^{2011}+3^{2011}+...+2012^{2011} $ is divisible by $2025078$.
2016 Gulf Math Olympiad, 2
Let $x$ be a real number that satisfies $x^1 + x^{-1} = 3$
Prove that $x^n + x^{-n}$ is an positive integer , then prove that the positive integer $x^{3^{1437}}+x^{3^{-1437}}$ is divisible by at least $1439 \times 2^{1437}$ positive integers
2016 IMO Shortlist, A8
Find the largest real constant $a$ such that for all $n \geq 1$ and for all real numbers $x_0, x_1, ... , x_n$ satisfying $0 = x_0 < x_1 < x_2 < \cdots < x_n$ we have
\[\frac{1}{x_1-x_0} + \frac{1}{x_2-x_1} + \dots + \frac{1}{x_n-x_{n-1}} \geq a \left( \frac{2}{x_1} + \frac{3}{x_2} + \dots + \frac{n+1}{x_n} \right)\]
2009 Czech and Slovak Olympiad III A, 1
Knowing that the numbers $p, 3p+2, 5p+4, 7p+6, 9p+8$, and $11p+10$ are all primes, prove that $6p+11$ is a composite number.
2017 LMT, individual
[b]p1.[/b] Find the number of zeroes at the end of $20^{17}$.
[b]p2.[/b] Express $\frac{1}{\sqrt{20} +\sqrt{17}}$ in simplest radical form.
[b]p3.[/b] John draws a square $ABCD$. On side $AB$ he draws point $P$ so that $\frac{BP}{PA}=\frac{1}{20}$ and on side $BC$ he draws point $Q$ such that $\frac{BQ}{QC}=\frac{1}{17}$ . What is the ratio of the area of $\vartriangle PBQ$ to the area of $ABCD$?
[b]p4.[/b] Alfred, Bill, Clara, David, and Emily are sitting in a row of five seats at a movie theater. Alfred and Bill don’t want to sit next to each other, and David and Emily have to sit next to each other. How many arrangements can they sit in that satisfy these constraints?
[b]p5.[/b] Alex is playing a game with an unfair coin which has a $\frac15$ chance of flipping heads and a $\frac45$ chance of flipping tails. He flips the coin three times and wins if he flipped at least one head and one tail. What is the probability that Alex wins?
[b]p6.[/b] Positive two-digit number $\overline{ab}$ has $8$ divisors. Find the number of divisors of the four-digit number $\overline{abab}$.
[b]p7.[/b] Call a positive integer $n$ diagonal if the number of diagonals of a convex $n$-gon is a multiple of the number of sides. Find the number of diagonal positive integers less than or equal to $2017$.
[b]p8.[/b] There are $4$ houses on a street, with $2$ on each side, and each house can be colored one of 5 different colors. Find the number of ways that the houses can be painted such that no two houses on the same side of the street are the same color and not all the houses are different colors.
[b]p9.[/b] Compute $$|2017 -|2016| -|2015-| ... |3-|2-1|| ...||||.$$
[b]p10.[/b] Given points $A,B$ in the coordinate plane, let $A \oplus B$ be the unique point $C$ such that $\overline{AC}$ is parallel to the $x$-axis and $\overline{BC}$ is parallel to the $y$-axis. Find the point $(x, y)$ such that $((x, y) \oplus (0, 1)) \oplus (1,0) = (2016,2017) \oplus (x, y)$.
[b]p11.[/b] In the following subtraction problem, different letters represent different nonzero digits.
$\begin{tabular}{ccccc}
& M & A & T & H \\
- & & H & A & M \\
\hline
& & L & M & T \\
\end{tabular}$
How many ways can the letters be assigned values to satisfy the subtraction problem?
[b]p12.[/b] If $m$ and $n$ are integers such that $17n +20m = 2017$, then what is the minimum possible value of $|m-n|$?
[b]p13. [/b]Let $f(x)=x^4-3x^3+2x^2+7x-9$. For some complex numbers $a,b,c,d$, it is true that $f (x) = (x^2+ax+b)(x^2+cx +d)$ for all complex numbers $x$. Find $\frac{a}{b}+ \frac{c}{d}$.
[b]p14.[/b] A positive integer is called an imposter if it can be expressed in the form $2^a +2^b$ where $a,b$ are non-negative integers and $a \ne b$. How many almost positive integers less than $2017$ are imposters?
[b]p15.[/b] Evaluate the infinite sum $$\sum^{\infty}_{n=1} \frac{n(n +1)}{2^{n+1}}=\frac12 +\frac34+\frac68+\frac{10}{16}+\frac{15}{32}+...$$
[b]p16.[/b] Each face of a regular tetrahedron is colored either red, green, or blue, each with probability $\frac13$ . What is the probability that the tetrahedron can be placed with one face down on a table such that each of the three visible faces are either all the same color or all different colors?
[b]p17.[/b] Let $(k,\sqrt{k})$ be the point on the graph of $y=\sqrt{x}$ that is closest to the point $(2017,0)$. Find $k$.
[b]p18.[/b] Alice is going to place $2016$ rooks on a $2016 \times 2016$ chessboard where both the rows and columns are labelled $1$ to $2016$; the rooks are placed so that no two rooks are in the same row or the same column. The value of a square is the sum of its row number and column number. The score of an arrangement of rooks is the sumof the values of all the occupied squares. Find the average score over all valid configurations.
[b]p19.[/b] Let $f (n)$ be a function defined recursively across the natural numbers such that $f (1) = 1$ and $f (n) = n^{f (n-1)}$. Find the sum of all positive divisors less than or equal to $15$ of the number $f (7)-1$.
[b]p20.[/b] Find the number of ordered pairs of positive integers $(m,n)$ that satisfy
$$gcd \,(m,n)+ lcm \,(m,n) = 2017.$$
[b]p21.[/b] Let $\vartriangle ABC$ be a triangle. Let $M$ be the midpoint of $AB$ and let $P$ be the projection of $A$ onto $BC$. If $AB = 20$, and $BC = MC = 17$, compute $BP$.
[b]p22.[/b] For positive integers $n$, define the odd parent function, denoted $op(n)$, to be the greatest positive odd divisor of $n$. For example, $op(4) = 1$, $op(5) = 5$, and $op(6) =3$. Find $\sum^{256}_{i=1}op(i).$
[b]p23.[/b] Suppose $\vartriangle ABC$ has sidelengths $AB = 20$ and $AC = 17$. Let $X$ be a point inside $\vartriangle ABC$ such that $BX \perp CX$ and $AX \perp BC$. If $|BX^4 -CX^4|= 2017$, the compute the length of side $BC$.
[b]p24.[/b] How many ways can some squares be colored black in a $6 \times 6$ grid of squares such that each row and each column contain exactly two colored squares? Rotations and reflections of the same coloring are considered distinct.
[b]p25.[/b] Let $ABCD$ be a convex quadrilateral with $AB = BC = 2$, $AD = 4$, and $\angle ABC = 120^o$. Let $M$ be the midpoint of $BD$. If $\angle AMC = 90^o$, find the length of segment $CD$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 CMIMC Number Theory, 5
One can define the greatest common divisor of two positive rational numbers as follows: for $a$, $b$, $c$, and $d$ positive integers with $\gcd(a,b)=\gcd(c,d)=1$, write \[\gcd\left(\dfrac ab,\dfrac cd\right) = \dfrac{\gcd(ad,bc)}{bd}.\] For all positive integers $K$, let $f(K)$ denote the number of ordered pairs of positive rational numbers $(m,n)$ with $m<1$ and $n<1$ such that \[\gcd(m,n)=\dfrac{1}{K}.\] What is $f(2017)-f(2016)$?
2009 Germany Team Selection Test, 1
In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
1988 AIME Problems, 10
A convex polyhedron has for its faces 12 squares, 8 regular hexagons, and 6 regular octagons. At each vertex of the polyhedron one square, one hexagon, and one octagon meet. How many segments joining vertices of the polyhedron lie in the interior of the polyhedron rather than along an edge or a face?
2020 USMCA, 25
Let $AB$ be a segment of length $2$. The locus of points $P$ such that the $P$-median of triangle $ABP$ and its reflection over the $P$-angle bisector of triangle $ABP$ are perpendicular determines some region $R$. Find the area of $R$.
2021 Malaysia IMONST 1, 17
Determine the sum of all positive integers $n$ that satisfy the following condition:
when $6n + 1$ is written in base $10$, all its digits are equal.
2010 APMO, 3
Let $n$ be a positive integer. $n$ people take part in a certain party. For any pair of the participants, either the two are acquainted with each other or they are not. What is the maximum possible number of the pairs for which the two are not acquainted but have a common acquaintance among the participants?
1999 Harvard-MIT Mathematics Tournament, 1
One of the receipts for a math tournament showed that $72$ identical trophies were purchased for $\$$-$99.9$-, where the first and last digits were illegible. How much did each trophy cost?
2019 Moldova EGMO TST, 3
There are $10{}$ apples, each with a with a weight which is no more than $100{}$ g. There is a weighing scale with two plates which shows the difference between the weights on the plates. Prove that
1) It is possible to put some (more than one) apples on the plates of the scale such that the difference between the weights on the plates will be less than $1$ g.
2) It is possible to put an equal amount (more than one) of apples on each plate of the scale such that the difference between the weights on the plates will be less than $2$ g.
1998 Croatia National Olympiad, Problem 4
Eight bulbs are arranged on a circle. In every step we perform the following operation: We simultaneously switch off all those bulbs whose two neighboring bulbs are in different states, and switch on the other bulbs. Prove that after at most four steps all the bulbs will be switched on.