This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 Sharygin Geometry Olympiad, 5

Tags: geometry
10.5 Let $BB'$, $CC'$ be the altitudes of an acute triangle $ABC$. Two circles through $A$ and $C'$ are tangent to $BC$ at points $P$ and $Q$. Prove that $A, B', P, Q$ are concyclic.

2007 Croatia Team Selection Test, 8

Positive integers $x>1$ and $y$ satisfy an equation $2x^2-1=y^{15}$. Prove that 5 divides $x$.

2023 IFYM, Sozopol, 1

On the board, the numbers from $1$ to $n$ are written. Achka (A) and Bavachka (B) play the following game. First, A erases one number, then B erases two consecutive numbers, then A erases three consecutive numbers, and finally B erases four consecutive numbers. What is the smallest $n$ such that B can definitely make her moves, no matter how A plays?

2001 SNSB Admission, 6

There are $ n\ge 1 $ ordered bulbs controlled by $ n $ ordered switches such that the $ k\text{-th} $ switch controls the $ k\text{-th} $ bulb and also the $ j\text{-th} $ bulb if and only if the $ j\text{-th} $ switch controls the $ k\text{-th} $ bulb, for any $ 1\le k,j\le n. $ If all bulbs are off, show that it can be chosen some switches such that, if pushed simmultaneously, the bulbs turn all on.

2007 Putnam, 3

Let $ x_0 \equal{} 1$ and for $ n\ge0,$ let $ x_{n \plus{} 1} \equal{} 3x_n \plus{} \left\lfloor x_n\sqrt {5}\right\rfloor.$ In particular, $ x_1 \equal{} 5,\ x_2 \equal{} 26,\ x_3 \equal{} 136,\ x_4 \equal{} 712.$ Find a closed-form expression for $ x_{2007}.$ ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)

2009 CIIM, Problem 3

Tags:
Let $r > n$ be positive integers. A "good word" is an $n$-tuple $\langle a_1,\dots, a_n \rangle$ of distinct positive integers between 1 and $r$. A "play" consist of changing a integer $a_i$ of a good word, in such a way that the resulting word is still a good word. The distance between two good words $A= \langle a_1,\dots, a_n \rangle$ and $B = \langle b_1,\dots, b_n \rangle$ is the minimun number of plays needed to obtain B from A. Find the maximun posible distance between two good words.

1952 AMC 12/AHSME, 33

A circle and a square have the same perimeter. Then: $ \textbf{(A)}\ \text{their areas are equal} \qquad\textbf{(B)}\ \text{the area of the circle is the greater}$ $ \textbf{(C)}\ \text{the area of the square is the greater}$ $ \textbf{(D)}\ \text{the area of the circle is } \pi \text{ times the area of the square} \\ \qquad\textbf{(E)}\ \text{none of these}$

2003 China Team Selection Test, 1

In triangle $ABC$, $AB > BC > CA$, $AB=6$, $\angle{B}-\angle{C}=90^o$. The incircle touches $BC$ at $E$ and $EF$ is a diameter of the incircle. Radical $AF$ intersect $BC$ at $D$. $DE$ equals to the circumradius of $\triangle{ABC}$. Find $BC$ and $AC$.

2013 Princeton University Math Competition, 5

Let $A$ be the greatest possible value of a product of positive integers that sums to $2014$. Compute the sum of all bases and exponents in the prime factorization of $A$. For example, if $A=7\cdot 11^5$, the answer would be $7+11+5=23$.

2005 iTest, 2

Tags: algebra
Find the sum of the solutions of $x^3 + x + 182 = 0$.

2007 Greece Junior Math Olympiad, 2

If $n$ is is an integer such that $4n+3$ is divisible by $11,$ find the form of $n$ and the remainder of $n^{4}$ upon division by $11$.

1992 Tournament Of Towns, (346) 4

On the plane is give a broken line $ABCD$ in which $AB = BC = CD = 1$, and $AD$ is not equal to $1$. The positions of $B$ and $C$ are fixed but $A$ and $D$ change their positions in turn according to the following rule (preserving the distance rules given): the point $A$ is reflected with respect to the line $BD$, then $D$ is reflected with respect to the line $AC$ (in which $A$ occupies its new position), then $A$ is reflected with respect to the line $BD$ ($D$ occupying its new position), $D$ is reflected with respect to the line $AC$, and so on. Prove that after several steps $A$ and $D$ coincide with their initial positions. (M Kontzewich)

2001 Brazil Team Selection Test, Problem 3

In a triangle $ABC,$ the internal and external bisectors of the angle $A$ intersect the line $BC$ at $D$ and $E$ respectively. The line $AC$ meets the circle with diameter $DE$ again at $F.$ The tangent line to the circle $ABF$ at $A$ meets the circle with diameter $DE$ again at $G.$ Show that $AF = AG.$

2023 pOMA, 3

Find all positive integers $l$ for which the equation \[ a^3+b^3+ab=(lab+1)(a+b) \] has a solution over positive integers $a,b$.

1986 IMO Longlists, 60

Prove the inequality \[(-a+b+c)^2(a-b+c)^2(a+b-c)^2 \geq (-a^2+b^2+c^2)(a^2-b^2+c^2)(a^2+b^2-c^2)\] for all real numbers $a, b, c.$

1955 Czech and Slovak Olympiad III A, 1

Consider a trapezoid $ABCD,AB\parallel CD,AB>CD.$ Let us denote intersections of lines as follows: $E=AC\cap BD, F=AD\cap BC.$ Let $GH$ be a line such that $G\in AD,H\in BC, E\in GH,GH\parallel AB.$ Moreover, denote $K,L$ midpoints of the bases $AB,CD$ respectively. Show that (a) the points $K,L$ lie on the line $EF,$ (b) lines $AC,KH$ and $BD,KG$ are not parallel (denote $M=AC\cap KH,N=BD\cap KG$), (c) the points $F,M,N$ are collinear.

1991 AMC 8, 18

Tags: percent , gauss
The vertical axis indicates the number of employees, but the scale was accidentally omitted from this graph. What percent of the employees at the Gauss company have worked there for $5$ years or more? [asy] for(int a=1; a<11; ++a) { draw((a,0)--(a,-.5)); } draw((0,10.5)--(0,0)--(10.5,0)); label("$1$",(1,-.5),S); label("$2$",(2,-.5),S); label("$3$",(3,-.5),S); label("$4$",(4,-.5),S); label("$5$",(5,-.5),S); label("$6$",(6,-.5),S); label("$7$",(7,-.5),S); label("$8$",(8,-.5),S); label("$9$",(9,-.5),S); label("$10$",(10,-.5),S); label("Number of years with company",(5.5,-2),S); label("X",(1,0),N); label("X",(1,1),N); label("X",(1,2),N); label("X",(1,3),N); label("X",(1,4),N); label("X",(2,0),N); label("X",(2,1),N); label("X",(2,2),N); label("X",(2,3),N); label("X",(2,4),N); label("X",(3,0),N); label("X",(3,1),N); label("X",(3,2),N); label("X",(3,3),N); label("X",(3,4),N); label("X",(3,5),N); label("X",(3,6),N); label("X",(3,7),N); label("X",(4,0),N); label("X",(4,1),N); label("X",(4,2),N); label("X",(5,0),N); label("X",(5,1),N); label("X",(6,0),N); label("X",(6,1),N); label("X",(7,0),N); label("X",(7,1),N); label("X",(8,0),N); label("X",(9,0),N); label("X",(10,0),N); label("Gauss Company",(5.5,10),N); [/asy] $\text{(A)}\ 9\% \qquad \text{(B)}\ 23\frac{1}{3}\% \qquad \text{(C)}\ 30\% \qquad \text{(D)}\ 42\frac{6}{7}\% \qquad \text{(E)}\ 50\% $

2011 District Olympiad, 3

Let be two complex numbers $ a,b. $ Show that the following affirmations are equivalent: $ \text{(i)} $ there are four numbers $ x_1,x_2,x_3,x_4\in\mathbb{C} $ such that $ \big| x_1 \big| =\big| x_3 \big|, \big| x_2 \big| =\big| x_4 \big|, $ and $$ x_{j_1}^2-ax_{j_1}+b=0=x_{j_2}^2-bx_{j_2}+a,\quad\forall j_1\in\{ 1,2\} ,\quad\forall j_2\in\{ 3,4\} . $$ $ \text{(ii)} a^3=b^3 $ or $ b=\overline{a} $ (the conjugate of a).

2019 Tuymaada Olympiad, 3

The plan of a picture gallery is a chequered figure where each square is a room, and every room can be reached from each other by moving to adjacent rooms. A custodian in a room can watch all the rooms that can be reached from this room by one move of a chess queen (without leaving the gallery). What minimum number of custodians is sufficient to watch all the rooms in every gallery of $n$ rooms ($n > 2$)?

2020-21 IOQM India, 7

Tags:
Let $\triangle ABC$ be a triangle with $AB=AC$. Let $D$ be a point on the segment $BC$ such that $BD= 48 \frac{1}{61}$ and $DC=61$. Let $E$ be a point on $AD$ such that $CE$ is perpendicular to $AD$ and $DE=11$. Find $AE$.

Taiwan TST 2015 Round 1, 2

Given a positive integer $n \geq 3$. Find all $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that for any $n$ positive reals $a_1,...,a_n$, the following condition is always satisfied: $\sum_{i=1}^{n}(a_i-a_{i+1})f(a_i+a_{i+1}) = 0$ where $a_{n+1} = a_1$.

1993 All-Russian Olympiad Regional Round, 11.1

Find all natural numbers $n$ for which the sum of digits of $5^n$ equals $2^n$.

2023 Iran Team Selection Test, 2

$ABCD$ is cyclic quadrilateral and $O$ is the center of its circumcircle. Suppose that $AD \cap BC = E$ and $AC \cap BD = F$. Circle $\omega$ is tanget to line $AC$ and $BD$. $PQ$ is a diameter of $\omega$ that $F$ is orthocenter of $EPQ$. Prove that line $OE$ is passing through center of $\omega$ [i]Proposed by Mahdi Etesami Fard [/i]

2023 Yasinsky Geometry Olympiad, 4

Pick a point $C$ on a semicircle with diameter $AB$. Let $P$ and $Q$ be two points on segment $AB$ such that $AP= AC$ and $BQ= BC$. The point $O$ is the center of the circumscribed circle of triangle $CPQ$ and point $H$ is the orthocenter of triangle $CPQ$ . Prove that for all posible locations of point $C$, the line $OH$ is passing through a fixed point. (Mykhailo Sydorenko)

2014 ELMO Shortlist, 5

Let $n$ be a positive integer. For any $k$, denote by $a_k$ the number of permutations of $\{1,2,\dots,n\}$ with exactly $k$ disjoint cycles. (For example, if $n=3$ then $a_2=3$ since $(1)(23)$, $(2)(31)$, $(3)(12)$ are the only such permutations.) Evaluate \[ a_n n^n + a_{n-1} n^{n-1} + \dots + a_1 n. \][i]Proposed by Sammy Luo[/i]