This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1965 Miklós Schweitzer, 10

A gambler plays the following coin-tossing game. He can bet an arbitrary positive amount of money. Then a fair coin is tossed, and the gambler wins or loses the amount he bet depending on the outcome. Our gambler, who starts playing with $ x$ forints, where $ 0<x<2C$, uses the following strategy: if at a given time his capital is $ y<C$, he risks all of it; and if he has $ y>C$, he only bets $ 2C\minus{}y$. If he has exactly $ 2C$ forints, he stops playing. Let $ f(x)$ be the probability that he reaches $ 2C$ (before going bankrupt). Determine the value of $ f(x)$.

2021 Junior Balkan Team Selection Tests - Romania, P1

Let $n\geq 2$ be a positive integer and let $a_1,a_2,...,a_n\in[0,1]$ be real numbers. Find the maximum value of the smallest of the numbers: \[a_1-a_1a_2, \ a_2-a_2a_3,...,a_n-a_na_1.\]

2004 National Olympiad First Round, 23

Tags:
What is the maximal possible value of $n$ such that no matter how $25$ squares are selected in an infinite chessboard one can find $n$ squares in which none of them share a common corner? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11 $

2019 Israel Olympic Revenge, G

Tags: excircle , geometry
Let $\omega$ be the $A$-excircle of triangle $ABC$ and $M$ the midpoint of side $BC$. $G$ is the pole of $AM$ w.r.t $\omega$ and $H$ is the midpoint of segment $AG$. Prove that $MH$ is tangent to $\omega$.

2014 ELMO Shortlist, 12

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2012 IFYM, Sozopol, 6

Tags: function , algebra
Determine all functions $f:\Bbb{R}\to\Bbb{R}$ such that \[ f(x^2 + f(y)) = (f(x) + y^2)^ 2 \] , for all $x,y\in \Bbb{R}.$

2005 MOP Homework, 6

A computer network is formed by connecting $2004$ computers by cables. A set $S$ of these computers is said to be independent if no pair of computers of $S$ is connected by a cable. Suppose that the number of cables used is the minimum number possible such that the size of any independent set is at most $50$. Let $c(L)$ be the number of cables connected to computer $L$. Show that for any distinct computers $A$ and $B$, $c(A)=c(B)$ if they are connected by a cable and $|c(A)-c(B)| \le 1$ otherwise. Also, find the number of cables used in the network.

2014 Iran MO (3rd Round), 7

We have a machine that has an input and an output. The input is a letter from the finite set $I$ and the output is a lamp that at each moment has one of the colors of the set $C=\{c_1,\dots,c_p\}$. At each moment the machine has an inner state that is one of the $n$ members of finite set $S$. The function $o: S \rightarrow C$ is a surjective function defining that at each state, what color must the lamp be, and the function $t:S \times I \rightarrow S$ is a function defining how does giving each input at each state changes the state. We only shall see the lamp and we have no direct information from the state of the car at current moment. In other words a machine is $M=(S,I,C,o,t)$ such that $S,I,C$ are finite, $t:S \times I \rightarrow S$ , and $o:S \rightarrow C$ is surjective. It is guaranteed that for each two different inner states, there's a sequence of inputs such that the color of the lamp after giving the sequence to the machine at the first state is different from the color of the lamp after giving the sequence to the machine at the second state. (a) The machine $M$ has $n$ different inner states. Prove that for each two different inner states, there's a sequence of inputs of length no more than $n-p$ such that the color of the lamp after giving the sequence to the machine at the first state is different from the color of the lamp after giving the sequence to the machine at the second state. (b) Prove that for a machine $M$ with $n$ different inner states, there exists an algorithm with no more than $n^2$ inputs that starting at any unknown inner state, at the end of the algorithm the state of the machine at that moment is known. Can you prove the above claim for $\frac{n^2}{2}$?

2010 Contests, 1

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all $x, y\in\mathbb{R}$, we have \[f(x+y)+f(x)f(y)=f(xy)+(y+1)f(x)+(x+1)f(y).\]

2009 China Team Selection Test, 3

Prove that for any odd prime number $ p,$ the number of positive integer $ n$ satisfying $ p|n! \plus{} 1$ is less than or equal to $ cp^\frac{2}{3}.$ where $ c$ is a constant independent of $ p.$

2016 Middle European Mathematical Olympiad, 3

A $8 \times 8$ board is given, with sides directed north-south and east-west. It is divided into $1 \times 1$ cells in the usual manner. In each cell, there is most one [i]house[/i]. A house occupies only one cell. A house is [i] in the shade[/i] if there is a house in each of the cells in the south, east and west sides of its cell. In particular, no house placed on the south, east or west side of the board is in the shade. Find the maximal number of houses that can be placed on the board such that no house is in the shade.

2014 ELMO Shortlist, 5

Tags: function , algebra
Let $\mathbb R^\ast$ denote the set of nonzero reals. Find all functions $f: \mathbb R^\ast \to \mathbb R^\ast$ satisfying \[ f(x^2+y)+1=f(x^2+1)+\frac{f(xy)}{f(x)} \] for all $x,y \in \mathbb R^\ast$ with $x^2+y\neq 0$. [i]Proposed by Ryan Alweiss[/i]

2008 ITest, 8

The math team at Jupiter Falls Middle School meets twice a month during the Summer, and the math team coach, Mr. Fischer, prepares some Olympics-themed problems for his students. One of the problems Joshua and Alexis work on boils down to a system of equations: \begin{align*}2x+3y+3z&=8,\\3x+2y+3z&=808,\\3x+3y+2z&=80808.\end{align*} Their goal is not to find a solution $(x,y,z)$ to the system, but instead to compute the sum of the variables. Find the value of $x+y+z$.

2025 Harvard-MIT Mathematics Tournament, 16

Tags: guts
The [i]Cantor set[/i] is defined as the set of real numbers $x$ such that $0 \le x < 1$ and the digit $1$ does not appear in the base-$3$ expansion of $x.$ Two numbers are uniformly and independently selected at random from the Cantor set. Compute the expected value of their difference. (Formally, one can pick a number $x$ uniformly at random from the Cantor set by first picking a real number $y$ uniformly at random from the interval $[0, 1)$, writing it out in binary, reading its digits as if they were in base-$3,$ and setting $x$ to $2$ times the result.)

2012 Romania Team Selection Test, 4

Let $S$ be a set of positive integers, each of them having exactly $100$ digits in base $10$ representation. An element of $S$ is called [i]atom[/i] if it is not divisible by the sum of any two (not necessarily distinct) elements of $S$. If $S$ contains at most $10$ atoms, at most how many elements can $S$ have?

2024 HMNT, 2

Tags: guts
Compute the smallest integer $n > 72$ that has the same set of prime divisors as $72.$

2012 Harvard-MIT Mathematics Tournament, 1

Tags: hmmt , function
Let $f$ be the function such that \[f(x)=\begin{cases}2x & \text{if }x\leq \frac{1}{2}\\2-2x & \text{if }x>\frac{1}{2}\end{cases}\] What is the total length of the graph of $\underbrace{f(f(\ldots f}_{2012\text{ }f's}(x)\ldots))$ from $x=0$ to $x=1?$

2015 NIMO Problems, 2

There exists a unique strictly increasing arithmetic sequence $\{a_i\}_{i=1}^{100}$ of positive integers such that \[a_1+a_4+a_9+\cdots+a_{100}=\text{1000},\] where the summation runs over all terms of the form $a_{i^2}$ for $1\leq i\leq 10$. Find $a_{50}$. [i]Proposed by David Altizio and Tony Kim[/i]

2011 Abels Math Contest (Norwegian MO), 3a

The positive numbers $a_1, a_2,...$ satisfy $a_1 = 1$ and $(m+n)a_{m+n }\le a_m +a_n$ for all positive integers $m$ and $n$. Show that $\frac{1}{a_{200}} > 4 \cdot 10^7$ . .

1959 Kurschak Competition, 1

$a, b, c$ are three distinct integers and $n$ is a positive integer. Show that $$\frac{a^n}{(a - b)(a - c)}+\frac{ b^n}{(b - a)(b - c)} +\frac{ c^n}{(c - a)(c - b)}$$ is an integer.

2014 Mexico National Olympiad, 3

Let $\Gamma_1$ be a circle and $P$ a point outside of $\Gamma_1$. The tangents from $P$ to $\Gamma_1$ touch the circle at $A$ and $B$. Let $M$ be the midpoint of $PA$ and $\Gamma_2$ the circle through $P$, $A$ and $B$. Line $BM$ cuts $\Gamma_2$ at $C$, line $CA$ cuts $\Gamma_1$ at $D$, segment $DB$ cuts $\Gamma_2$ at $E$ and line $PE$ cuts $\Gamma_1$ at $F$, with $E$ in segment $PF$. Prove lines $AF$, $BP$, and $CE$ are concurrent.

2020-2021 Fall SDPC, 5

Tags: geometry
Let $ABC$ be a triangle with area $1$. Let $D$ be a point on segment $BC$. Let points $E$ and $F$ on $AC$ and $AB$, respectively, satisfy $DE || AB$ and $DF || AC$. Compute, with proof, the area of the quadrilateral with vertices at $E$, $F$, the midpoint of $BD$, and the midpoint of $CD$.

2005 Germany Team Selection Test, 1

Find the smallest positive integer $n$ with the following property: For any integer $m$ with $0 < m < 2004$, there exists an integer $k$ such that \[\frac{m}{2004}<\frac{k}{n}<\frac{m+1}{2005}.\]

2024/2025 TOURNAMENT OF TOWNS, P2

In a $2025 \times 2025$ table, several cells are marked. At each move, Cyril can get to know the number of marked cells in any checkered square inside the initial table, with side less than $2025$. What is the minimal number of moves, which allows to determine the total number of marked cells for sure? (5 marks)

1979 AMC 12/AHSME, 10

If $P_1P_2P_3P_4P_5P_6$ is a regular hexagon whose apothem (distance from the center to midpoint of a side) is $2$, and $Q_i$ is the midpoint of side $P_iP_{i+1}$ for $i=1,2,3,4$, then the area of quadrilateral $Q_1Q_2Q_3Q_4$ is $\textbf{(A) }6\qquad\textbf{(B) }2\sqrt{6}\qquad\textbf{(C) }\frac{8\sqrt{3}}{3}\qquad\textbf{(D) }3\sqrt{3}\qquad\textbf{(E) }4\sqrt{3}$