This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1981 IMO Shortlist, 8

Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]

2009 Today's Calculation Of Integral, 448

Evaluate $ \int_0^{\ln 2} \frac {2e^x \plus{} 1}{e^{3x} \plus{} 2e^{2x} \plus{} e^{x} \minus{} e^{ \minus{} x}}\ dx.$

2018 Taiwan TST Round 1, 3

There are $n$ husbands and wives at a party in the palace. The husbands sit at a round table, and the wives sit at another round tables. The king and queen (not included in the $n$ couples) are going to shake hands with them one by one. Assume that the king starts from a man, and the queen starts from his wife. Consider the following two ways of shaking hands: (i) The king shakes hands with the men one by one clockwise. Each time when the king shakes hands with a man, the queen moves clockwise to his wife and shakes hands with her. Assume that at last when the king gets back to the man he begins with, the queen goes around the table $a$ times. (ii) The queen shakes hands with the women one by one clockwise. Each time when the queen shakes hands with a woman, the king moves clockwise to her husband and shakes hands with him. Assume that at last when the queen gets back to the woman she begins with, the king goes around the table $b$ times. Determine the maximum possible value of $|a-b|$.

1965 AMC 12/AHSME, 38

Tags:
$ A$ takes $ m$ times as long to do a piece of work as $ B$ and $ C$ together; $ B$ takes $ n$ times as long as $ C$ and $ A$ together; and $ C$ takes $ x$ times as long as $ A$ and $ B$ together. Then $ x$, in terms of $ m$ and $ n$, is: $ \textbf{(A)}\ \frac {2mn}{m \plus{} n} \qquad \textbf{(B)}\ \frac {1}{2(m \plus{} n)} \qquad \textbf{(C)}\ \frac {1}{m \plus{} n \minus{} mn} \qquad \textbf{(D)}\ \frac {1 \minus{} mn}{m \plus{} n \plus{} 2mn} \qquad \textbf{(E)}\ \frac {m \plus{} n \plus{} 2}{mn \minus{} 1}$

Kyiv City MO Juniors 2003+ geometry, 2014.7.41

The sides of triangles $ABC$ and $ACD$ satisfy the following conditions: $AB = AD = 3$ cm, $BC = 7$ cm, $DC = 11$ cm. What values can the side length $AC$ take if it is an integer number of centimeters, is the average in $\Delta ACD$ and the largest in $\Delta ABC$?

2019 Brazil Team Selection Test, 3

Tags: geometry
Let $ABC$ be a scalene triangle with circumcircle $\Gamma$. Let $M$ be the midpoint of $BC$. A variable point $P$ is selected in the line segment $AM$. The circumcircles of triangles $BPM$ and $CPM$ intersect $\Gamma$ again at points $D$ and $E$, respectively. The lines $DP$ and $EP$ intersect (a second time) the circumcircles to triangles $CPM$ and $BPM$ at $X$ and $Y$, respectively. Prove that as $P$ varies, the circumcircle of $\triangle AXY$ passes through a fixed point $T$ distinct from $A$.

2002 Silk Road, 1

Let $ \triangle ABC$ be a triangle with incircle $ \omega(I,r)$and circumcircle $ \zeta(O,R)$.Let $ l_{a}$ be the angle bisector of $ \angle BAC$.Denote $ P\equal{}l_{a}\cap\zeta$.Let $ D$ be the point of tangency $ \omega$ with $ [BC]$.Denote $ Q\equal{}PD\cap\zeta$.Show that $ PI\equal{}QI$ if $ PD\equal{}r$.

MathLinks Contest 7th, 7.3

Tags:
Let $ n$ be a positive integer, and let $ M \equal{} \{1,2,\ldots, 2n\}$. Find the minimal positive integer $ m$, such that no matter how we choose the subsets $ A_i \subset M$, $ 1\leq i\leq m$, with the properties: (1) $ |A_i\minus{}A_j|\geq 1$, for all $ i\neq j$, (2) $ \bigcup_{i\equal{}1}^m A_i \equal{} M$, we can always find two subsets $ A_k$ and $ A_l$ such that $ A_k \cup A_l \equal{} M$ (here $ |X|$ represents the number of elements in the set $ X$.)

2015 Baltic Way, 15

Tags: geometry
In triangle $ABC$, the interior and exterior angle bisectors of $ \angle BAC$ intersect the line $BC$ in $D $ and $E$, respectively. Let $F$ be the second point of intersection of the line $AD$ with the circumcircle of the triangle $ ABC$. Let $O$ be the circumcentre of the triangle $ ABC $and let $D'$ be the reflection of $D$ in $O$. Prove that $ \angle D'FE =90.$

1981 AMC 12/AHSME, 3

Tags:
For $x \neq 0$, $\frac{1}{x}+ \frac{1}{2x}+\frac{1}{3x}$ equals $\text{(A)}\ \frac{1}{2x} \qquad \text{(B)}\ \frac{1}{6} \qquad \text{(C)}\ \frac{5}{6x} \qquad \text{(D)}\ \frac{11}{6x} \qquad \text{(E)}\ \frac{1}{6x^3}$

2012 Kyoto University Entry Examination, 2

Given a regular tetrahedron $OABC$. Take points $P,\ Q,\ R$ on the sides $OA,\ OB,\ OC$ respectively. Note that $P,\ Q,\ R$ are different from the vertices of the tetrahedron $OABC$. If $\triangle{PQR}$ is an equilateral triangle, then prove that three sides $PQ,\ QR,\ RP$ are pararell to three sides $AB,\ BC,\ CA$ respectively. 30 points

2013 NIMO Problems, 5

In a certain game, Auntie Hall has four boxes $B_1$, $B_2$, $B_3$, $B_4$, exactly one of which contains a valuable gemstone; the other three contain cups of yogurt. You are told the probability the gemstone lies in box $B_n$ is $\frac{n}{10}$ for $n=1,2,3,4$. Initially you may select any of the four boxes; Auntie Hall then opens one of the other three boxes at random (which may contain the gemstone) and reveals its contents. Afterwards, you may change your selection to any of the four boxes, and you win if and only if your final selection contains the gemstone. Let the probability of winning assuming optimal play be $\tfrac mn$, where $m$ and $n$ are relatively prime integers. Compute $100m+n$. [i]Proposed by Evan Chen[/i]

1978 AMC 12/AHSME, 9

If $x<0$, then $\left|x-\sqrt{(x-1)^2}\right|$ equals $\textbf{(A) }1\qquad\textbf{(B) }1-2x\qquad\textbf{(C) }-2x-1\qquad\textbf{(D) }1+2x\qquad \textbf{(E) }2x-1$

2003 Miklós Schweitzer, 2

Let $p$ be a prime and let $M$ be an $n\times m$ matrix with integer entries such that $Mv\not\equiv 0\pmod{p}$ for any column vector $v\neq 0$ whose entries are $0$ are $1$. Show that there exists a row vector $x$ with integer entries such that no entry of $xM$ is $0\pmod{p}$. (translated by L. Erdős)

2006 National Olympiad First Round, 13

Let $D$ be a point on the side $[AB]$ of the isosceles triangle $ABC$ such that $|AB|=|AC|$. The parallel line to $BC$ passing through $D$ intersects $AC$ at $E$. If $m(\widehat A) = 20^\circ$, $|DE|=1$, $|BC|=a$, and $|BE|=a+1$, then which of the followings is equal to $|AB|$? $ \textbf{(A)}\ 2a \qquad\textbf{(B)}\ a^2-a \qquad\textbf{(C)}\ a^2+1 \qquad\textbf{(D)}\ (a+1)^2 \qquad\textbf{(E)}\ a^2+a $

1978 Bulgaria National Olympiad, Problem 5

Prove that for every convex polygon can be found such three sequential vertices for which a circle that they lie on covers the polygon. [i]Jordan Tabov[/i]

1979 Romania Team Selection Tests, 3.

Let $a,b,c\in \mathbb{R}$ with $a^2+b^2+c^2=1$ and $\lambda\in \mathbb{R}_{>0}\setminus\{1\}$. Then for each solution $(x,y,z)$ of the system of equations: \[ \begin{cases} x-\lambda y=a,\\ y-\lambda z=b,\\ z-\lambda x=c. \end{cases} \] we have $\displaystyle x^2+y^2+z^2\leqslant \frac1{(\lambda-1)^2}$. [i]Radu Gologan[/i]

2007 Hanoi Open Mathematics Competitions, 3

Tags: geometry , diagonal
Which of the following is a possible number of diagonals of a convex polygon? (A) $02$ (B) $21$ (C) $32$ (D) $54$ (E) $63$

2018 IMO Shortlist, N2

Let $n>1$ be a positive integer. Each cell of an $n\times n$ table contains an integer. Suppose that the following conditions are satisfied: [list=1] [*] Each number in the table is congruent to $1$ modulo $n$. [*] The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to $n$ modulo $n^2$. [/list] Let $R_i$ be the product of the numbers in the $i^{\text{th}}$ row, and $C_j$ be the product of the number in the $j^{\text{th}}$ column. Prove that the sums $R_1+\hdots R_n$ and $C_1+\hdots C_n$ are congruent modulo $n^4$.

2025 Macedonian TST, Problem 1

Tags: geometry
On the sides of the triangle \(\triangle ABC\) lie the following points: \(K\) and \(L\) on \(AB\), \(M\) on \(BC\), and \(N\) on \(CA\). Let \[ P = AM\cap BN,\quad R = KM\cap LN,\quad S = KN\cap LM, \] and let the line \(CS\) meet \(AB\) at \(Q\). Prove that the points \(P\), \(Q\), and \(R\) are collinear.

2018 Purple Comet Problems, 10

Find the remainder when $11^{2018}$ is divided by $100$.

2014 Sharygin Geometry Olympiad, 7

Tags: geometry , circles
Two points on a circle are joined by a broken line shorter than the diameter of the circle. Prove that there exists a diameter which does not intersect this broken line. (Folklor )

2021 BMT, 2

Tags: algebra
The battery life on a computer decreases at a rate proportional to the display brightness. Austin starts off his day with both his battery life and brightness at $100\%$. Whenever his battery life (expressed as a percentage) reaches a multiple of $25$, he also decreases the brightness of his display to that multiple of $25$. If left at $100\%$ brightness, the computer runs out of battery in $1$ hour. Compute the amount of time, in minutes, it takes for Austin’s computer to reach $0\%$ battery using his modified scheme.

2012 Regional Competition For Advanced Students, 3

In an arithmetic sequence, the di fference of consecutive terms in constant. We consider sequences of integers in which the di fference of consecutive terms equals the sum of the differences of all preceding consecutive terms. Which of these sequences with $a_0 = 2012$ and $1\leqslant d = a_1-a_0 \leqslant 43$ contain square numbers?

2019 Balkan MO Shortlist, A4

Let $a_{ij}, i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$ be positive real numbers. Prove that \[ \sum_{i = 1}^m \left( \sum_{j = 1}^n \frac{1}{a_{ij}} \right)^{-1} \le \left( \sum_{j = 1}^n \left( \sum_{i = 1}^m a_{ij} \right)^{-1} \right)^{-1} \]