Found problems: 85335
2003 Iran MO (3rd Round), 8
A positive integer $n$ is said to be a [i]perfect power[/i] if $n=a^b$ for some integers $a,b$ with $b>1$.
$(\text{a})$ Find $2004$ perfect powers in arithmetic progression.
$(\text{b})$ Prove that perfect powers cannot form an infinite arithmetic progression.
2021 Harvard-MIT Mathematics Tournament., 8
For positive integers $a$ and $b$, let $M(a,b) = \tfrac{\text{lcm}(a,b)}{\gcd(a,b)},$ and for each positive integer $n \ge 2,$ define
\[x_n = M(1, M(2, M(3, \dots , M(n - 2, M(n - 1, n))\cdots))).\]
Compute the number of positive integers $n$ such that $2 \le n \le 2021$ and $5x_n^2 + 5x_{n+1}^2 = 26x_nx_{n+1}.$
2021 MIG, 15
Which of the following answer choices is the closest approximation to
\[\dfrac34+\dfrac78+\dfrac{15}{16}+\cdots+\dfrac{1023}{1024} = \dfrac{2^2-1}{2^2}+\dfrac{2^3-1}{2^3}+\cdots+\dfrac{2^{10}-1}{2^{10}}?\]
$\textbf{(A) }\dfrac{15}{2}\qquad\textbf{(B) }8\qquad\textbf{(C) }\dfrac{17}{2}\qquad\textbf{(D) }9\qquad\textbf{(E) }\dfrac{19}{2}$
2008 Bulgarian Autumn Math Competition, Problem 12.3
Find all continuous functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that
\[(f(x)f(y)-1)f(x+y)=2f(x)f(y)-f(x)-f(y)\quad \forall x,y\in \mathbb{R}\]
2017 ASDAN Math Tournament, 10
Alice lives on a continent with $6$ countries labeled $1$ through $6$. Each country randomly chooses one other country to allow entry from. Alice can travel to any country that allows entry from the country she is currently in, and can travel along a path through multiple countries in this manner. If Alice starts in county $1$, what is the expected number of countries that she can reach (including country $1$)?
2014 AMC 12/AHSME, 22
The number $5^{867}$ is between $2^{2013}$ and $2^{2014}$. How many pairs of integers $(m,n)$ are there such that $1\leq m\leq 2012$ and \[5^n<2^m<2^{m+2}<5^{n+1}?\]
$\textbf{(A) }278\qquad
\textbf{(B) }279\qquad
\textbf{(C) }280\qquad
\textbf{(D) }281\qquad
\textbf{(E) }282\qquad$
PEN E Problems, 16
Prove that for any prime $p$ in the interval $\left]n, \frac{4n}{3}\right]$, $p$ divides \[\sum^{n}_{j=0}{{n}\choose{j}}^{4}.\]
2011 Ukraine Team Selection Test, 6
The circle $ \omega $ inscribed in triangle $ABC$ touches its sides $AB, BC, CA$ at points $K, L, M$ respectively. In the arc $KL$ of the circle $ \omega $ that does not contain the point $M$, we select point $S$. Denote by $P, Q, R, T$ the intersection points of straight $AS$ and $KM, ML$ and $SC, LP$ and $KQ, AQ$ and $PC$ respectively. It turned out that the points $R, S$ and $M$ are collinear. Prove that the point $T$ also lies on the line $SM$.
2002 India IMO Training Camp, 5
Let $a,b,c$ be positive reals such that $a^2+b^2+c^2=3abc$. Prove that
\[\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2} \geq \frac{9}{a+b+c}\]
Estonia Open Junior - geometry, 2012.1.5
A hiking club wants to hike around a lake along an exactly circular route. On the shoreline they determine two points, which are the most distant from each other, and start to walk along the circle, which has these two points as the endpoints of its diameter. Can they be sure that, independent of the shape of the lake, they do not have to swim across the lake on any part of their route?
2002 Korea - Final Round, 1
For $n \ge 3$, let $S=a_1+a_2+\cdots+a_n$ and $T=b_1b_2\cdots b_n$ for positive real numbers $a_1,a_2,\ldots,a_n, b_1,b_2 ,\ldots,b_n$, where the numbers $b_i$ are pairwise distinct.
(a) Find the number of distinct real zeroes of the polynomial
\[f(x)=(x-b_1)(x-b_2)\cdots(x-b_n)\sum_{j=1}^n \frac{a_j}{x-b_j}\]
(b) Prove the inequality
\[\frac1{n-1}\sum_{j=1}^n \left(1-\frac{a_j}{S}\right)b_j > \left(\frac{T}{S}\sum_{j=1}^{n} \frac{a_j}{b_j}\right)^{\frac1{n-1}}\]
2018 Romania Team Selection Tests, 1
Let $ABC$ be a triangle, and let $M$ be a point on the side $(AC)$ .The line through $M$ and parallel to $BC$ crosses $AB$ at $N$. Segments $BM$ and $CN$ cross at $P$, and the circles $BNP$ and $CMP$ cross again at $Q$. Show that angles $BAP$ and $CAQ$ are equal.
2007 Hong Kong TST, 5
[url=http://www.mathlinks.ro/Forum/viewtopic.php?t=107262]IMO 2007 HKTST 1[/url]
Problem 5
The sequence $\{a_{n}\}$ is defined by $a_{1}=0$ and $(n+1)^{3}a_{n+1}=2n^{2}(2n+1)a_{n}+2(3n+1)$ for all integers $\geq 1$. Show that infintely many members of the sequence are positive integers.
2018 Romania National Olympiad, 2
Let $a,b,c \geq 0$ and $a+b+c=3.$ Prove that $$\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \geq \frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+a}$$
2016 Switzerland Team Selection Test, Problem 3
Let $ABC$ be a triangle with $\angle{C} = 90^{\circ}$, and let $H$ be the foot of the altitude from $C$. A point $D$ is chosen inside the triangle $CBH$ so that $CH$ bisects $AD$. Let $P$ be the intersection point of the lines $BD$ and $CH$. Let $\omega$ be the semicircle with diameter $BD$ that meets the segment $CB$ at an interior point. A line through $P$ is tangent to $\omega$ at $Q$. Prove that the lines $CQ$ and $AD$ meet on $\omega$.
2020 USMCA, 30
For a positive integer $n$, let $\Omega(n)$ denote the number of prime factors of $n$, counting multiplicity. Let $f_1(n)$ and $f_3(n)$ denote the sum of positive divisors $d|n$ where $\Omega(d)\equiv 1\pmod 4$ and $\Omega(d)\equiv 3\pmod 4$, respectively. For example, $f_1(72) = 72 + 2 + 3 = 77$ and $f_3(72) = 8+12+18 = 38$. Determine $f_3(6^{2020}) - f_1(6^{2020})$.
2010 China Girls Math Olympiad, 8
Determine the least odd number $a > 5$ satisfying the following conditions: There are positive integers $m_1,m_2, n_1, n_2$ such that $a=m_1^2+n_1^2$, $a^2=m_2^2+n_2^2$, and $m_1-n_1=m_2-n_2.$
2005 Georgia Team Selection Test, 10
Let $ a,b,c$ be positive numbers, satisfying $ abc\geq 1$. Prove that
\[ a^{3} \plus{} b^{3} \plus{} c^{3} \geq ab \plus{} bc \plus{} ca.\]
2014 Online Math Open Problems, 8
Let $a_1$, $a_2$, $a_3$, $a_4$, $a_5$ be real numbers satisfying
\begin{align*}
2a_1+a_2+a_3+a_4+a_5 &= 1 + \tfrac{1}{8}a_4 \\
2a_2+a_3+a_4+a_5 &= 2 + \tfrac{1}{4}a_3 \\
2a_3+a_4+a_5 &= 4 + \tfrac{1}{2}a_2 \\
2a_4+a_5 &= 6 + a_1
\end{align*}
Compute $a_1+a_2+a_3+a_4+a_5$.
[i]Proposed by Evan Chen[/i]
2011 USA Team Selection Test, 2
In the nation of Onewaynia, certain pairs of cities are connected by roads. Every road connects exactly two cities (roads are allowed to cross each other, e.g., via bridges). Some roads have a traffic capacity of 1 unit and other roads have a traffic capacity of 2 units. However, on every road, traffic is only allowed to travel in one direction. It is known that for every city, the sum of the capacities of the roads connected to it is always odd. The transportation minister needs to assign a direction to every road. Prove that he can do it in such a way that for every city, the difference between the sum of the capacities of roads entering the city and the sum of the capacities of roads leaving the city is always exactly one.
[i]Proposed by Zuming Feng and Yufei Zhao[/i]
2024 Romania National Olympiad, 4
We consider an integer $n \ge 3,$ the set $S=\{1,2,3,\ldots,n\}$ and the set $\mathcal{F}$ of the functions from $S$ to $S.$ We say that $\mathcal{G} \subset \mathcal{F}$ is a generating set for $\mathcal{H} \subset \mathcal{F}$ if any function in $\mathcal{H}$ can be represented as a composition of functions from $\mathcal{G}.$
a) Let the functions $a:S \to S,$ $a(n-1)=n,$ $a(n)=n-1$ and $a(k)=k$ for $k \in S \setminus \{n-1,n\}$ and $b:S \to S,$ $b(n)=1$ and $b(k)=k+1$ for $k \in S \setminus \{n\}.$ Prove that $\{a,b\}$ is a generating set for the set $\mathcal{B}$ of bijective functions of $\mathcal{F}.$
b) Prove that the smallest number of elements that a generating set of $\mathcal{F}$ has is $3.$
1983 IMO Longlists, 47
In a plane, three pairwise intersecting circles $C_1, C_2, C_3$ with centers $M_1,M_2,M_3$ are given. For $i = 1, 2, 3$, let $A_i$ be one of the points of intersection of $C_j$ and $C_k \ (\{i, j, k \} = \{1, 2, 3 \})$. Prove that if $ \angle M_3A_1M_2 = \angle M_1A_2M_3 = \angle M_2A_3M_1 = \frac{\pi}{3}$(directed angles), then $M_1A_1, M_2A_2$, and $M_3A_3$ are concurrent.
2019 AMC 10, 11
How many positive integer divisors of $201^9$ are perfect squares or perfect cubes (or both)?
$\textbf{(A) } 32 \qquad\textbf{(B) } 36 \qquad\textbf{(C) } 37 \qquad\textbf{(D) } 39 \qquad\textbf{(E) } 41$
2014 VJIMC, Problem 4
Let $P_1,P_2,P_3,P_4$ be the graphs of four quadratic polynomials drawn in the coordinate plane. Suppose that $P_1$ is tangent to $P_2$ at the point $q_2,P_2$ is tangent to $P_3$ at the point $q_3,P_3$ is tangent to $P_4$ at the point $q_4$, and $P_4$ is tangent to $P_1$ at the point $q_1$. Assume that all the points $q_1,q_2,q_3,q_4$ have distinct $x$-coordinates. Prove that $q_1,q_2,q_3,q_4$ lie on a graph of an at most quadratic polynomial.
2003 National Olympiad First Round, 24
If $3a=1+\sqrt 2$, what is the largest integer not exceeding $9a^4-6a^3+8a^2-6a+9$?
$
\textbf{(A)}\ 8
\qquad\textbf{(B)}\ 9
\qquad\textbf{(C)}\ 10
\qquad\textbf{(D)}\ 12
\qquad\textbf{(E)}\ \text{None of the preceding}
$