This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2024 Germany Team Selection Test, 3

A sequence of integers $a_0, a_1 …$ is called [i]kawaii[/i] if $a_0 =0, a_1=1,$ and $$(a_{n+2}-3a_{n+1}+2a_n)(a_{n+2}-4a_{n+1}+3a_n)=0$$ for all integers $n \geq 0$. An integer is called [i]kawaii[/i] if it belongs to some kawaii sequence. Suppose that two consecutive integers $m$ and $m+1$ are both kawaii (not necessarily belonging to the same kawaii sequence). Prove that $m$ is divisible by $3,$ and that $m/3$ is also kawaii.

2006 Australia National Olympiad, 2

For any positive integer $n$, define $a_n$ to be the product of the digits of $n$. (a) Prove that $n \geq a(n)$ for all positive integers $n$. (b) Find all $n$ for which $n^2-17n+56 = a(n)$.

2019 Ramnicean Hope, 2

Let $ P,Q,R $ be the intersections of the medians $ AD,BE,CF $ of a triangle $ ABC $ with its circumcircle, respectively. Show that $ ABC $ is equilateral if $ \overrightarrow{DP} +\overrightarrow{EQ} +\overrightarrow{FR} =0. $ [i]Dragoș Lăzărescu[/i]

2007 All-Russian Olympiad, 5

Two numbers are written on each vertex of a convex $100$-gon. Prove that it is possible to remove a number from each vertex so that the remaining numbers on any two adjacent vertices are different. [i]F. Petrov [/i]

2014 AMC 8, 19

A cube with $3$-inch edges is to be constructed from $27$ smaller cubes with $1$-inch edges. Twenty-one of the cubes are colored red and $6$ are colored white. If the $3$-inch cube is constructed to have the smallest possible white surface area showing, what fraction of the surface area is white? $\textbf{(A) }\frac{5}{54}\qquad\textbf{(B) }\frac{1}{9}\qquad\textbf{(C) }\frac{5}{27}\qquad\textbf{(D) }\frac{2}{9}\qquad \textbf{(E) }\frac{1}{3}$

2004 Purple Comet Problems, 24

Tags: quadratic
Let $a$ be a real number greater than $1$ such that $\frac{20a}{a^2+1} = \sqrt{2}$. Find $\frac{14a}{a^2 - 1}$.

2014 Brazil Team Selection Test, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2010 Contests, 2

There are $n$ points in the page such that no three of them are collinear.Prove that number of triangles that vertices of them are chosen from these $n$ points and area of them is 1,is not greater than $\frac23(n^2-n)$.

1966 Spain Mathematical Olympiad, 2

A three-digit number is written $xyz$ in the base $7$ system and $zyx$ in the base $9$ system . What is the number?

2004 Croatia National Olympiad, Problem 3

The sequence $(p_n)_{n\in\mathbb N}$ is defined by $p_1=2$ and, for $n\ge2$, $p_n$ is the largest prime factor of $p_1p_2\cdots p_{n-1}+1$. Show that $p_n\ne5$ for all $n$.

2006 Germany Team Selection Test, 1

A house has an even number of lamps distributed among its rooms in such a way that there are at least three lamps in every room. Each lamp shares a switch with exactly one other lamp, not necessarily from the same room. Each change in the switch shared by two lamps changes their states simultaneously. Prove that for every initial state of the lamps there exists a sequence of changes in some of the switches at the end of which each room contains lamps which are on as well as lamps which are off. [i]Proposed by Australia[/i]

2022 AMC 12/AHSME, 6

A data set consists of $6$ (not distinct) positive integers: $1$, $7$, $5$, $2$, $5$, and $X$. The average (arithmetic mean) of the $6$ numbers equals a value in the data set. What is the sum of all positive values of $X$? $\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40$

2008 IMC, 2

Two different ellipses are given. One focus of the first ellipse coincides with one focus of the second ellipse. Prove that the ellipses have at most two points in common.

2015 Saudi Arabia JBMO TST, 2

Tags: digit , odd , combinatorics
Let $A$ and $B$ be the number of odd positive integers $n<1000$ for which the number formed by the last three digits of $n^{2015}$ is greater and smaller than $n$, respectively. Prove that $A=B$.

STEMS 2021 Phy Cat B, Q1

Tags:
[list] [*]There are two semi-infinite plane mirrors inclined physically at a non-zero angle with the inner surfaces being reflective.\\ Prove that all lines of incident/reflected rays are tangential to a particular circle for any given incident ray being incident on a reflective side. Assume that the incident ray lies on one of the normal planes to the mirrors.[/*] [*] There's a cone of an arbitrary base with large enough length.\\ The inner surface polished (Outer surface is absorbing in nature) and the apex is fixed to a point. The cone is being rotated around the apex at an angular speed $\omega$ around the vertical axis and assume that a large part of the inside is visible horizontally. A fixed horizontal ray is projected from outside towards the cone (which often falls inside of it), prove that all the lines of incident ray/reflected rays at all instants lie tangential to a particular sphere.\\ Try guessing the radius of the sphere with the parameters you observe.[/*]

2012 Iran MO (3rd Round), 2

Suppose $S$ is a convex figure in plane with area $10$. Consider a chord of length $3$ in $S$ and let $A$ and $B$ be two points on this chord which divide it into three equal parts. For a variable point $X$ in $S-\{A,B\}$, let $A'$ and $B'$ be the intersection points of rays $AX$ and $BX$ with the boundary of $S$. Let $S'$ be those points $X$ for which $AA'>\frac{1}{3} BB'$. Prove that the area of $S'$ is at least $6$. [i]Proposed by Ali Khezeli[/i]

2005 Balkan MO, 3

Tags: inequalities
Let $a,b,c$ be positive real numbers. Prove the inequality \[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c+\frac{4(a-b)^2}{a+b+c}.\] When does equality occur?

2002 All-Russian Olympiad Regional Round, 11.1

The real numbers $x$ and $y$ are such that for any distinct odd primes $p$ and $q$ the number $x^p + y^q$ is rational. Prove that $x$ and $y$ are rational numbers.

2005 India IMO Training Camp, 2

Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying \[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\] for any two positive integers $ m$ and $ n$. [i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers: $ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$. By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$). [i]Proposed by Mohsen Jamali, Iran[/i]

2017 CCA Math Bonanza, L4.1

Tags:
Compute $$\sum_{k=0}^{\infty}k\left(\frac{1}{3}\right)^k.$$ [i]2017 CCA Math Bonanza Lightning Round #4.1[/i]

2006 Purple Comet Problems, 10

How many rectangles are there in the diagram below such that the sum of the numbers within the rectangle is a multiple of 7? [asy] int n; n=0; for (int i=0; i<=7;++i) { draw((i,0)--(i,7)); draw((0,i)--(7,i)); for (int a=0; a<=7;++a) { if ((a != 7)&&(i != 7)) { n=n+1; label((string) n,(a,i),(2,2)); } } } [/asy]

2020 BMT Fall, 7

Compute the number of ordered triples of positive integers $(a,b,c)$ such that $a + b + c + ab + bc + ac = abc + 1$.

2023 Harvard-MIT Mathematics Tournament, 18

Tags: guts
Elisenda has a piece of paper in the shape of a triangle with vertices $A, B,$ and $C$ such that $AB = 42.$ She chooses a point $D$ on segment $AC,$ and she folds the paper along line $BD$ so that $A$ lands at a point $E$ on segment $BC.$ Then, she folds the paper along line $DE.$ When she does this, $B$ lands at the midpoint of segment $DC.$ Compute the perimeter of the original unfolded triangle.

2016 SEEMOUS, Problem 2

Tags:
SEEMOUS 2016 COMPETITION PROBLEMS

1957 Moscow Mathematical Olympiad, 349

For any column and any row in a rectangular numerical table, the product of the sum of the numbers in a column by the sum of the numbers in a row is equal to the number at the intersection of the column and the row. Prove that either the sum of all the numbers in the table is equal to $1$ or all the numbers are equal to $0$.