This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1979 AMC 12/AHSME, 13

Tags: inequalities
The inequality $y-x<\sqrt{x^2}$ is satisfied if and only if $\textbf{(A) }y<0\text{ or }y<2x\text{ (or both inequalities hold)}\qquad$ $\textbf{(B) }y>0\text{ or }y<2x\text{ (or both inequalities hold)}\qquad$ $\textbf{(C) }y^2<2xy\qquad\textbf{(D) }y<0\qquad\textbf{(E) }x>0\text{ and }y<2x$

2011 China Team Selection Test, 2

Let $S$ be a set of $n$ points in the plane such that no four points are collinear. Let $\{d_1,d_2,\cdots ,d_k\}$ be the set of distances between pairs of distinct points in $S$, and let $m_i$ be the multiplicity of $d_i$, i.e. the number of unordered pairs $\{P,Q\}\subseteq S$ with $|PQ|=d_i$. Prove that $\sum_{i=1}^k m_i^2\leq n^3-n^2$.

2008 Balkan MO Shortlist, A1

For all $\alpha_1, \alpha_2,\alpha_3 \in \mathbb{R}^+$, Prove \begin{align*} \sum \frac{1}{2\nu \alpha_1 +\alpha_2+\alpha_3} > \frac{2\nu}{2\nu +1} \left( \sum \frac{1}{\nu \alpha_1 + \nu \alpha_2 + \alpha_3} \right) \end{align*} for every positive real number $\nu$

2017 Benelux, 2

Let $n\geq 2$ be an integer. Alice and Bob play a game concerning a country made of $n$ islands. Exactly two of those $n$ islands have a factory. Initially there is no bridge in the country. Alice and Bob take turns in the following way. In each turn, the player must build a bridge between two different islands $I_1$ and $I_2$ such that: $\bullet$ $I_1$ and $I_2$ are not already connected by a bridge. $\bullet$ at least one of the two islands $I_1$ and $I_2$ is connected by a series of bridges to an island with a factory (or has a factory itself). (Indeed, access to a factory is needed for the construction.) As soon as a player builds a bridge that makes it possible to go from one factory to the other, this player loses the game. (Indeed, it triggers an industrial battle between both factories.) If Alice starts, then determine (for each $n\geq 2$) who has a winning strategy. ([i]Note:[/i] It is allowed to construct a bridge passing above another bridge.)

1998 AIME Problems, 7

Tags:
Let $n$ be the number of ordered quadruples $(x_1,x_2,x_3,x_4)$ of positive odd integers that satisfy $\sum_{i=1}^4 x_i=98.$ Find $\frac n{100}.$

2004 Manhattan Mathematical Olympiad, 1

Tags:
Is there a whole number, so that if we multiply its digits we get $528$?

2017 Iranian Geometry Olympiad, 1

Tags: geometry
Each side of square $ABCD$ with side length of $4$ is divided into equal parts by three points. Choose one of the three points from each side, and connect the points consecutively to obtain a quadrilateral. Which numbers can be the area of this quadrilateral? Just write the numbers without proof. [asy] import graph; size(4.662701220158751cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.337693339683693, xmax = 2.323308403400238, ymin = -0.39518100382374105, ymax = 4.44811779880594; /* image dimensions */ pen yfyfyf = rgb(0.5607843137254902,0.5607843137254902,0.5607843137254902); pen sqsqsq = rgb(0.12549019607843137,0.12549019607843137,0.12549019607843137); filldraw((-3.,4.)--(1.,4.)--(1.,0.)--(-3.,0.)--cycle, white, linewidth(1.6)); filldraw((0.,4.)--(-3.,2.)--(-2.,0.)--(1.,1.)--cycle, yfyfyf, linewidth(2.) + sqsqsq); /* draw figures */ draw((-3.,4.)--(1.,4.), linewidth(1.6)); draw((1.,4.)--(1.,0.), linewidth(1.6)); draw((1.,0.)--(-3.,0.), linewidth(1.6)); draw((-3.,0.)--(-3.,4.), linewidth(1.6)); draw((0.,4.)--(-3.,2.), linewidth(2.) + sqsqsq); draw((-3.,2.)--(-2.,0.), linewidth(2.) + sqsqsq); draw((-2.,0.)--(1.,1.), linewidth(2.) + sqsqsq); draw((1.,1.)--(0.,4.), linewidth(2.) + sqsqsq); label("$A$",(-3.434705427329005,4.459844914550807),SE*labelscalefactor,fontsize(14)); label("$B$",(1.056779902954702,4.424663567316209),SE*labelscalefactor,fontsize(14)); label("$C$",(1.0450527872098359,0.07390362597090126),SE*labelscalefactor,fontsize(14)); label("$D$",(-3.551976584777666,0.12081208895036549),SE*labelscalefactor,fontsize(14)); /* dots and labels */ dot((-2.,4.),linewidth(4.pt) + dotstyle); dot((-1.,4.),linewidth(4.pt) + dotstyle); dot((0.,4.),linewidth(4.pt) + dotstyle); dot((1.,3.),linewidth(4.pt) + dotstyle); dot((1.,2.),linewidth(4.pt) + dotstyle); dot((1.,1.),linewidth(4.pt) + dotstyle); dot((0.,0.),linewidth(4.pt) + dotstyle); dot((-1.,0.),linewidth(4.pt) + dotstyle); dot((-3.,1.),linewidth(4.pt) + dotstyle); dot((-3.,2.),linewidth(4.pt) + dotstyle); dot((-3.,3.),linewidth(4.pt) + dotstyle); dot((-2.,0.),linewidth(4.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy] [i]Proposed by Hirad Aalipanah[/i]

2011 Turkey Team Selection Test, 2

Let $I$ be the incenter and $AD$ be a diameter of the circumcircle of a triangle $ABC.$ If the point $E$ on the ray $BA$ and the point $F$ on the ray $CA$ satisfy the condition \[BE=CF=\frac{AB+BC+CA}{2}\] show that the lines $EF$ and $DI$ are perpendicular.

2001 Tournament Of Towns, 6

In a row are 23 boxes such that for $1\le k \le 23$, there is a box containing exactly $k$ balls. In one move, we can double the number of balls in any box by taking balls from another box which has more. Is it always possible to end up with exactly $k$ balls in the $k$-th box for $1\le k\le 23$?

2010 Princeton University Math Competition, 2

Tags: geometry
A white ball has finitely many disk-shaped black region (closed) painted on its surface. Each black region has area less than half of the surface area of the sphere. No two black regions touch or overlap. Determine, with proof, whether there is always a diameter of the ball with two white endpoints.

2020 Iranian Geometry Olympiad, 1

Tags: geometry
By a [i]fold[/i] of a polygon-shaped paper, we mean drawing a segment on the paper and folding the paper along that. Suppose that a paper with the following figure is given. We cut the paper along the boundary of the shaded region to get a polygon-shaped paper. Start with this shaded polygon and make a rectangle-shaped paper from it with at most 5 number of folds. Describe your solution by introducing the folding lines and drawing the shape after each fold on your solution sheet. (Note that the folding lines do not have to coincide with the grid lines of the shape.) [i]Proposed by Mahdi Etesamifard[/i]

2015 Polish MO Finals, 2

Tags: geometry
Prove that diagonals of a convex quadrilateral are perpendicular if and only if inside of the quadrilateral there is a point, whose orthogonal projections on sides of the quadrilateral are vertices of a rectangle.

2019 Purple Comet Problems, 20

Harold has $3$ red checkers and $3$ black checkers. Find the number of distinct ways that Harold can place these checkers in stacks. Two ways of stacking checkers are the same if each stack of the rst way matches a corresponding stack in the second way in both size and color arrangement. So, for example, the $3$ stack arrangement $RBR, BR, B$ is distinct from $RBR, RB, B$, but the $4$ stack arrangement $RB, BR, B, R$ is the same as $B, BR, R, RB$.

1994 Iran MO (2nd round), 2

The incircle of triangle $ABC$ meet the sides $AB, AC$ and $BC$ in $M,N$ and $P$, respectively. Prove that the orthocenter of triangle $MNP,$ the incenter and the circumcenter of triangle $ABC$ are collinear. [asy] import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen ttttff = rgb(0.2,0.2,1); pen ffwwww = rgb(1,0.4,0.4); pen xdxdff = rgb(0.49,0.49,1); draw((8,17.58)--(2.84,9.26)--(20.44,9.21)--cycle); draw((8,17.58)--(2.84,9.26),ttttff+linewidth(2pt)); draw((2.84,9.26)--(20.44,9.21),ttttff+linewidth(2pt)); draw((20.44,9.21)--(8,17.58),ttttff+linewidth(2pt)); draw(circle((9.04,12.66),3.43),blue+linewidth(1.2pt)+linetype("8pt 8pt")); draw((6.04,14.42)--(8.94,9.24),ffwwww+linewidth(1.2pt)); draw((8.94,9.24)--(11.12,15.48),ffwwww+linewidth(1.2pt)); draw((11.12,15.48)--(6.04,14.42),ffwwww+linewidth(1.2pt)); draw((8.94,9.24)--(7.81,14.79)); draw((11.12,15.48)--(6.95,12.79)); draw((6.04,14.42)--(10.12,12.6)); dot((8,17.58),ds); label("$A$", (8.11,18.05),NE*lsf); dot((2.84,9.26),ds); label("$B$", (2.11,8.85), NE*lsf); dot((20.44,9.21),ds); label("$C$", (20.56,8.52), NE*lsf); dot((9.04,12.66),ds); label("$O$", (8.94,12.13), NE*lsf); dot((6.04,14.42),ds); label("$M$", (5.32,14.52), NE*lsf); dot((11.12,15.48),ds); label("$N$", (11.4,15.9), NE*lsf); dot((8.94,9.24),ds); label("$P$", (8.91,8.58), NE*lsf); dot((7.81,14.79),ds); label("$D$", (7.81,15.14),NE*lsf); dot((6.95,12.79),ds); label("$F$", (6.64,12.07),NE*lsf); dot((10.12,12.6),ds); label("$G$", (10.41,12.35),NE*lsf); dot((8.07,13.52),ds); label("$H$", (8.11,13.88),NE*lsf); clip((-0.68,-0.96)--(-0.68,25.47)--(30.71,25.47)--(30.71,-0.96)--cycle); [/asy]

2000 APMO, 4

Let $n,k$ be given positive integers with $n>k$. Prove that: \[ \frac{1}{n+1} \cdot \frac{n^n}{k^k (n-k)^{n-k}} < \frac{n!}{k! (n-k)!} < \frac{n^n}{k^k(n-k)^{n-k}} \]

2005 Iran Team Selection Test, 1

Tags: inequalities
Suppose that $ a_1$, $ a_2$, ..., $ a_n$ are positive real numbers such that $ a_1 \leq a_2 \leq \dots \leq a_n$. Let \[ {{a_1 \plus{} a_2 \plus{} \dots \plus{} a_n} \over n} \equal{} m; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{a_1^2 \plus{} a_2^2 \plus{} \dots \plus{} a_n^2} \over n} \equal{} 1. \] Suppose that, for some $ i$, we know $ a_i \leq m$. Prove that: \[ n \minus{} i \geq n \left(m \minus{} a_i\right)^2 \]

2024 Belarusian National Olympiad, 10.4

Tags: geometry
A parallelogram $ABCD$ is given. The incircle of triangle $ABC$ with center $I$ touches $AB,BC,CA$ at $R,P,Q$. Ray $DI$ intersects segment $AB$ at $S$. It turned out that $\angle DPR=90$ Prove that the circle with diameter $AS$ is tangent to the circumcircle of triangle $DPQ$ [i]M. Zorka[/i]

2024 Baltic Way, 19

Does there exist a positive integer $N$ which is divisible by at least $2024$ distinct primes and whose positive divisors $1 = d_1 < d_2 < \ldots < d_k = N$ are such that the number \[ \frac{d_2}{d_1}+\frac{d_3}{d_2}+\ldots+\frac{d_k}{d_{k-1}} \] is an integer?

2025 Francophone Mathematical Olympiad, 1

Tags: algebra
Let $a_1, a_2, a_3, \ldots$ be a sequence of positive integers satisfying the following property: for all positive integers $k < \ell$, for all distinct integers $m_1, m_2, \ldots, m_k$ and for all distinct integers $n_1, n_2, \ldots, n_\ell$, \[ a_{m_1} + a_{m_2} + \cdots + a_{m_k} \leqslant a_{n_1} + a_{n_2} + \cdots + a_{n_\ell}. \] Prove that there exist two integers $N$ and $b$ such that $a_n = b$ for all $n \geqslant N$.

2024 AMC 8 -, 5

Tags: amc8
Aaliyah rolls two standard 6-sided dice. She notices that the product of the two numbers rolled is a multiple of 6. Which of the following integers [i]cannot[/i] be the sum of the two numbers? $\textbf{(A) } 5\qquad\textbf{(B) } 6\qquad\textbf{(C) } 7\qquad\textbf{(D) } 8\qquad\textbf{(E) } 9$

2008 Sharygin Geometry Olympiad, 7

(F.Nilov) Two arcs with equal angular measure are constructed on the medians $ AA'$ and $ BB'$ of triangle $ ABC$ towards vertex $ C$. Prove that the common chord of the respective circles passes through $ C$.

2023 Azerbaijan BMO TST, 4

Find the largest positive integer $k{}$ for which there exists a convex polyhedron $\mathcal{P}$ with 2022 edges, which satisfies the following properties: [list] [*]The degrees of the vertices of $\mathcal{P}$ don’t differ by more than one, and [*]It is possible to colour the edges of $\mathcal{P}$ with $k{}$ colours such that for every colour $c{}$, and every pair of vertices $(v_1, v_2)$ of $\mathcal{P}$, there is a monochromatic path between $v_1$ and $v_2$ in the colour $c{}$. [/list] [i]Viktor Simjanoski, Macedonia[/i]

2024 Korea - Final Round, P1

Let $a, b, c, d$ be odd positive integers and pairwise coprime. For a positive integer $n$, let $$f(n) = \left[\frac{n}{a} \right]+\left[\frac{n}{b}\right]+\left[\frac{n}{c}\right]+\left[\frac{n}{d}\right]$$ Prove that $$\sum_{n=1}^{abcd}(-1)^{f(n)}=1$$

2019 Estonia Team Selection Test, 8

Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \] turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )

2009 Today's Calculation Of Integral, 505

In the $ xyz$ space with the origin $ O$, given a cuboid $ K: |x|\leq \sqrt {3},\ |y|\leq \sqrt {3},\ 0\leq z\leq 2$ and the plane $ \alpha : z \equal{} 2$. Draw the perpendicular $ PH$ from $ P$ to the plane. Find the volume of the solid formed by all points of $ P$ which are included in $ K$ such that $ \overline{OP}\leq \overline{PH}$.