This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1982 Tournament Of Towns, (018) 4

In a certain country there are more than $101$ towns. The capital of this country is connected by direct air routes with $100$ towns, and each town, except for the capital, is connected by direct air routes with $10$ towns (if $A$ is connected with $B, B$ is connected with $A$). It is known that from any town it is possible to travel by air to any other town (possibly via other towns). Prove that it is possible to close down half of the air routes connected with the capital, and preserve the capability of travelling from any town to any other town within the country. (IS Rubanov)

1990 Poland - Second Round, 2

In space, a point $O$ and a finite set of vectors $ \overrightarrow{v_1},\ldots,\overrightarrow{v_n} $ are given . We consider the set of points $ P $ for which the vector $ \overrightarrow{OP} $can be represented as a sum $ a_1 \overrightarrow{v_1} + \ldots + a_n\overrightarrow{v_n} $with coefficients satisfying the inequalities $ 0 \leq a_i \leq 1 $ $( i = 1, 2, \ldots, n $). Decide whether this set can be a tetrahedron.

2025 NCMO, 3

Let $\mathcal{S}$ be a set of points in the plane such that for each subset $\mathcal{T}$ of $\mathcal{S}$, there exists a convex $2025$-gon which contains all of the points in $\mathcal{T}$ and none of the rest of the points in $\mathcal{S}$ but not $\mathcal{T}$. Determine the greatest possible number of points in $\mathcal{S}$. [i]Jason Lee[/i]

2020 AMC 10, 16

Tags: amc10b
Bela and Jenn play the following game on the closed interval $[0, n]$ of the real number line, where $n$ is a fixed integer greater than $4$. They take turns playing, with Bela going first. At his first turn, Bela chooses any real number in the interval $[0, n]$. Thereafter, the player whose turn it is chooses a real number that is more than one unit away from all numbers previously chosen by either player. A player unable to choose such a number loses. Using optimal strategy, which player will win the game? $\textbf{(A) } \text{Bela will always win.}$ $\textbf{(B) } \text{Jenn will always win.} $ $\textbf{(C) } \text{Bela will win if and only if }n \text{ is odd.}$ $\textbf{(D) } \text{Jenn will win if and only if }n \text{ is odd.} $ $\textbf{(E) } \text{Jenn will win if and only if }n > 8.$

VMEO IV 2015, 12.1

Tags: rational , algebra
Given a set $S \subset R^+$, $S \ne \emptyset$ such that for all $a, b, c \in S$ (not necessarily distinct) then $a^3 + b^3 + c^3 - 3abc$ is rational number. Prove that for all $a, b \in S$ then $\frac{a - b}{a + b}$ is also rational.

1963 AMC 12/AHSME, 31

The number of solutions in positive integers of $2x+3y=763$ is: $\textbf{(A)}\ 255 \qquad \textbf{(B)}\ 254\qquad \textbf{(C)}\ 128 \qquad \textbf{(D)}\ 127 \qquad \textbf{(E)}\ 0$

2011 Tuymaada Olympiad, 2

In a word of more than $10$ letters, any two consecutive letters are different. Prove that one can change places of two consecutive letters so that the resulting word is not [i]periodic[/i], that is, cannot be divided into equal subwords.

1957 Putnam, B3

For $f(x)$ a positive , monotone decreasing function defined in $[0,1],$ prove that $$ \int_{0}^{1} f(x) dx \cdot \int_{0}^{1} xf(x)^{2} dx \leq \int_{0}^{1} f(x)^{2} dx \cdot \int_{0}^{1} xf(x) dx.$$

1995 Bundeswettbewerb Mathematik, 3

Each diagonal of a convex pentagon is parallel to one side of the pentagon. Prove that the ratio of the length of a diagonal to that of its corresponding side is the same for all five diagonals, and compute this ratio.

2008 Middle European Mathematical Olympiad, 2

Consider a $ n \times n$ checkerboard with $ n > 1, n \in \mathbb{N}.$ How many possibilities are there to put $ 2n \minus{} 2$ identical pebbles on the checkerboard (each on a different field/place) such that no two pebbles are on the same checkerboard diagonal. Two pebbles are on the same checkerboard diagonal if the connection segment of the midpoints of the respective fields are parallel to one of the diagonals of the $ n \times n$ square.

2016 NIMO Problems, 3

Tags: calculus
Let $f$ be the quadratic function with leading coefficient $1$ whose graph is tangent to that of the lines $y=-5x+6$ and $y=x-1$. The sum of the coefficients of $f$ is $\tfrac pq$, where $p$ and $q$ are positive relatively prime integers. Find $100p + q$. [i]Proposed by David Altizio[/i]

2000 Balkan MO, 4

Show that for any $n$ we can find a set $X$ of $n$ distinct integers greater than 1, such that the average of the elements of any subset of $X$ is a square, cube or higher power.

2012 Iran MO (3rd Round), 1

Prove that for each coloring of the points inside or on the boundary of a square with $1391$ colors, there exists a monochromatic regular hexagon.

2021 Bulgaria National Olympiad, 5

Does there exist a set $S$ of $100$ points in a plane such that the center of mass of any $10$ points in $S$ is also a point in $S$?

2011 Regional Olympiad of Mexico Center Zone, 5

There are $100$ stones in a pile. A partition of the heap in $k $ piles is called [i]special [/i] if it meets that the number of stones in each pile is different and also for any partition of any of the piles into two new piles it turns out that between the $k + 1$ piles there are two that have the same number of stones (each pile contains at least one stone). a) Find the maximum number $k$, such that there is a special partition of the $100$ stones into $k $ piles. b) Find the minimum number $k $, such that there is a special partition of the $100$ stones in $k $ piles.

2016 India PRMO, 3

Suppose $N$ is any positive integer. Add the digits of $N$ to obtain a smaller integer. Repeat this process of digit-addition till you get a single digit numbem. Find the number of positive integers $N \le 1000$, such that the final single-digit number $n$ is equal to $5$. Example: $N = 563\to (5 + 6 + 3) = 14 \to(1 + 4) = 5$ will be counted as one such integer.

2021 Azerbaijan IZhO TST, 1

Let $a, b, c$ be real numbers with the property as $ab + bc + ca = 1$. Show that: $$\frac {(a + b) ^ 2 + 1} {c ^ 2 + 2} + \frac {(b + c) ^ 2 + 1} {a ^ 2 + 2} + \frac {(c + a) ^ 2 + 1} {b ^ 2 + 2} \ge 3 $$.

2017 Putnam, B6

Tags:
Find the number of ordered $64$-tuples $\{x_0,x_1,\dots,x_{63}\}$ such that $x_0,x_1,\dots,x_{63}$ are distinct elements of $\{1,2,\dots,2017\}$ and \[x_0+x_1+2x_2+3x_3+\cdots+63x_{63}\] is divisible by $2017.$

2005 Cono Sur Olympiad, 2

Let $ABC$ be an acute-angled triangle and let $AN$, $BM$ and $CP$ the altitudes with respect to the sides $BC$, $CA$ and $AB$, respectively. Let $R$, $S$ be the pojections of $N$ on the sides $AB$, $CA$, respectively, and let $Q$, $W$ be the projections of $N$ on the altitudes $BM$ and $CP$, respectively. (a) Show that $R$, $Q$, $W$, $S$ are collinear. (b) Show that $MP=RS-QW$.

2010 Kosovo National Mathematical Olympiad, 2

Tags: algebra
Someones age is equal to the sum of the digits of his year of birth. How old is he and when was he born, if it is known that he is older than $11$. P.s. the current year in the problem is $2010$.

2014 NIMO Summer Contest, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2023 Princeton University Math Competition, 1

Tags: algebra , fe
1. Given $n \geq 1$, let $A_{n}$ denote the set of the first $n$ positive integers. We say that a bijection $f: A_{n} \rightarrow A_{n}$ has a hump at $m \in A_{n} \backslash\{1, n\}$ if $f(m)>f(m+1)$ and $f(m)>f(m-1)$. We say that $f$ has a hump at 1 if $f(1)>f(2)$, and $f$ has a hump at $n$ if $f(n)>f(n-1)$. Let $P_{n}$ be the probability that a bijection $f: A_{n} \rightarrow A_{n}$, when selected uniformly at random, has exactly one hump. For how many positive integers $n \leq 2020$ is $P_{n}$ expressible as a unit fraction?

1998 Denmark MO - Mohr Contest, 3

The points lie on three parallel lines with distances as indicated in the figure $A, B$ and $C$ such that square $ABCD$ is a square. Find the area of this square. [img]https://1.bp.blogspot.com/-xeFvahqPVyM/XzcFfB0-NfI/AAAAAAAAMYA/SV2XU59uBpo_K99ZBY43KSSOKe-veOdFQCLcBGAsYHQ/s0/1998%2BMohr%2Bp3.png[/img]

STEMS 2021 CS Cat B, Q3

Let $\Sigma$ be a finite set. For $x,y \in \Sigma^{\ast}$, define \[x\preceq y\] if $x$ is a sub-string ([b]not necessarily contiguous[/b]) of $y$. For example, $ac \preceq abc$. We call a set $S\subseteq \Sigma^{\ast}$ [b][u]good[/u][/b] if $\forall x,y \in \Sigma^{\ast}$, $$ x\preceq y, \; y \in S \; \; \; \Rightarrow \; x\in S .$$ Prove or disprove: Every good set is regular.

2015 IMO Shortlist, G6

Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma $ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order. Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other. Proposed by Ukraine