This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2008 IberoAmerican Olympiad For University Students, 4

Tags: parabola , geometry , conic
Two vertices $A,B$ of a triangle $ABC$ are located on a parabola $y=ax^2 + bx + c$ with $a>0$ in such a way that the sides $AC,BC$ are tangent to the parabola. Let $m_c$ be the length of the median $CC_1$ of triangle $ABC$ and $S$ be the area of triangle $ABC$. Find \[\frac{S^2}{m_c^3}\]

2019 District Olympiad, 2

Let $n \in \mathbb{N},n \ge 2,$ and $A,B \in \mathcal{M}_n(\mathbb{R}).$ Prove that there exists a complex number $z,$ such that $|z|=1$ and $$\Re \left( {\det(A+zB)} \right) \ge \det(A)+\det(B),$$ where $\Re(w)$ is the real part of the complex number $w.$

2008 Princeton University Math Competition, B1

Tags: rectangle
If a rectangle’s length is increased by $30\%$ and its width is decreased by $30\%$, by what percentage does its area change? State whether the area increases or decreases.

2010 Baltic Way, 19

For which $k$ do there exist $k$ pairwise distinct primes $p_1,p_2,\ldots ,p_k$ such that \[p_1^2+p_2^2+\ldots +p_k^2=2010? \]

1989 All Soviet Union Mathematical Olympiad, 494

Show that the $120$ five digit numbers which are permutations of $12345$ can be divided into two sets with each set having the same sum of squares.

1941 Putnam, B5

Tags: velocity
A car is being driven so that its wheels, all of radius $a$ feet, have an angular velocity of $\omega$ radians per second. A particle is thrown off from the tire of one of these wheels, where it is supposed that $a \omega^{2} >g$. Neglecting the resistance of the air, show that the maximum height above the roadway which the particle can reach is $$\frac{(a \omega+g \omega^{-1})^{2}}{2g}.$$

2012 Stanford Mathematics Tournament, 2

Find the sum of all integers $x$, $x \ge 3$, such that $201020112012_x$ (that is, $201020112012$ interpreted as a base $x$ number) is divisible by $x-1$

1996 Czech And Slovak Olympiad IIIA, 4

Tags: angle , product , geometry
Points $A$ and $B$ on the rays $CX$ and $CY$ respectively of an acute angle $XCY$ are given so that $CX < CA = CB < CY$. Construct a line meeting the ray $CX$ and the segments $AB,BC$ at $K,L,M$, respectively, such that $KA \cdot YB = XA \cdot MB = LA\cdot LB \ne 0$.

2007 Turkey Team Selection Test, 3

We write $1$ or $-1$ on each unit square of a $2007 \times 2007$ board. Find the number of writings such that for every square on the board the absolute value of the sum of numbers on the square is less then or equal to $1$.

2014 APMO, 1

Tags: algebra
For a positive integer $m$ denote by $S(m)$ and $P(m)$ the sum and product, respectively, of the digits of $m$. Show that for each positive integer $n$, there exist positive integers $a_1, a_2, \ldots, a_n$ satisfying the following conditions: \[ S(a_1) < S(a_2) < \cdots < S(a_n) \text{ and } S(a_i) = P(a_{i+1}) \quad (i=1,2,\ldots,n). \] (We let $a_{n+1} = a_1$.) [i]Problem Committee of the Japan Mathematical Olympiad Foundation[/i]

2000 Tournament Of Towns, 4

Among a set of $32$ coins , all identical in appearance, $30$ are real and $2$ are fake. Any two real coins have the same weight . The fake coins have the same weight , which is different from the weight of a real coin. How can one divide the coins into two groups of equal total weight by using a balance at most $4$ times? (A Shapovalov)

Novosibirsk Oral Geo Oly IX, 2023.2

Tags: geometry
Points $A, B, C, D$ and $E$ are located on the plane. It is known that $CA = 12$, $AB = 8$, $BC = 4$, $CD = 5$, $DB = 3$, $BE = 6$ and $ED = 3$. Find the length of $AE$.

2004 AIME Problems, 9

A sequence of positive integers with $a_1=1$ and $a_9+a_{10}=646$ is formed so that the first three terms are in geometric progression, the second, third, and fourth terms are in arithmetic progression, and, in general, for all $n\ge1$, the terms $a_{2n-1}$, $a_{2n}$, $a_{2n+1}$ are in geometric progression, and the terms $a_{2n}$, $a_{2n+1}$, and $a_{2n+2}$ are in arithmetic progression. Let $a_n$ be the greatest term in this sequence that is less than 1000. Find $n+a_n$.

2010 AMC 8, 11

Tags: ratio
The top of one tree is $16$ feet higher than the top of another tree. The height of the $2$ trees are at a ratio of $3:4$. In feet, how tall is the taller tree? $ \textbf{(A)}\ 48 \qquad\textbf{(B)}\ 64 \qquad\textbf{(C)}\ 80 \qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 112 $

1983 Spain Mathematical Olympiad, 4

Determine the number of real roots of the equation $$16x^5 - 20x^3 + 5x + m = 0.$$

MathLinks Contest 2nd, 5.1

For which positive integers $n \ge 4$ one can find n points in the plane, no three collinear, such that for each triangle formed with three of the $n$ points which are on the convex hull, exactly one of the $n - 3$ remaining points belongs to its interior.

2020 Hong Kong TST, 5

Tags: geometry , incircle
In $\Delta ABC$, let $D$ be a point on side $BC$. Suppose the incircle $\omega_1$ of $\Delta ABD$ touches sides $AB$ and $AD$ at $E,F$ respectively, and the incircle $\omega_2$ of $\Delta ACD$ touches sides $AD$ and $AC$ at $F,G$ respectively. Suppose the segment $EG$ intersects $\omega_1$ and $\omega_2$ again at $P$ and $Q$ respectively. Show that line $AD$, tangent of $\omega_1$ at $P$ and tangent of $\omega_2$ at $Q$ are concurrent.

2021 Princeton University Math Competition, 5

Given a real number $t$ with $0 < t < 1$, define the real-valued function $f(t, \theta) = \sum^{\infty}_{n=-\infty} t^{|n|}\omega^n$, where $\omega = e^{i \theta} = \cos \theta + i\sin \theta$. For $\theta \in [0, 2\pi)$, the polar curve $r(\theta) = f(t, \theta)$ traces out an ellipse $E_t$ with a horizontal major axis whose left focus is at the origin. Let $A(t)$ be the area of the ellipse $E_t$. Let $A\left( \frac12 \right) = \frac{a\pi}{b}$ , where $a, b$ are relatively prime positive integers. Find $100a +b$ .

2016 Azerbaijan BMO TST, 2

There are $100$ students who praticipate at exam.Also there are $25$ members of jury.Each student is checked by one jury.Known that every student likes $10$ jury $a)$ Prove that we can select $7$ jury such that any student likes at least one jury. $b)$ Prove that we can make this every student will be checked by the jury that he likes and every jury will check at most $10$ students.

1988 National High School Mathematics League, 1

Tags:
Define sequence $(a_n):a_1=1,a_2=2,a_{n+2}=\begin{cases} 5a_{n+1}-3a_n,\text{if }a_n\cdot a_{n+1}\text{ is even}\\ a_{n+1}-a_n,\text{if }a_n\cdot a_{n+1}\text{ is odd} \end{cases}$ Prove that for all $n\in\mathbb{Z}_+$, $a_n\neq0$.

2011 China Second Round Olympiad, 2

For any integer $n\ge 4$, prove that there exists a $n$-degree polynomial $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_0$ satisfying the two following properties: [b](1)[/b] $a_i$ is a positive integer for any $i=0,1,\ldots,n-1$, and [b](2)[/b] For any two positive integers $m$ and $k$ ($k\ge 2$) there exist distinct positive integers $r_1,r_2,...,r_k$, such that $f(m)\ne\prod_{i=1}^{k}f(r_i)$.

2020 CCA Math Bonanza, T4

Tags:
Compute \[ \left(\frac{4-\log_{36} 4 - \log_6 {18}}{\log_4 3} \right) \cdot \left( \log_8 {27} + \log_2 9 \right). \] [i]2020 CCA Math Bonanza Team Round #4[/i]

1988 Czech And Slovak Olympiad IIIA, 5

Find all numbers $a \in (-2, 2)$ for which the polynomial $x^{154}-ax^{77}+1$ is a multiple of the polynomial $x^{14}-ax^{7}+1$.

1980 All Soviet Union Mathematical Olympiad, 301

Prove that there is an infinite number of such numbers $B$ that the equation $\lfloor x^3/2\rfloor + \lfloor y^3/2 \rfloor = B$ has at least $1980$ integer solutions $(x,y)$. ($\lfloor z\rfloor$ denotes the greatest integer not exceeding $z$.)

2007 National Olympiad First Round, 23

Tags: geometry
A unit equilateral triangle is given. Divide each side into three equal parts. Remove the equilateral triangles whose bases are middle one-third segments. Now we have a new polygon. Remove the equilateral triangles whose bases are middle one-third segments of the sides of the polygon. After repeating these steps for infinite times, what is the area of the new shape? $ \textbf{(A)}\ \dfrac {1}{2\sqrt 3} \qquad\textbf{(B)}\ \dfrac {\sqrt 3}{8} \qquad\textbf{(C)}\ \dfrac {\sqrt 3}{10} \qquad\textbf{(D)}\ \dfrac {1}{4\sqrt 3} \qquad\textbf{(E)}\ \text{None of the above} $