This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2025 All-Russian Olympiad, 10.5

Let \( n \) be a natural number. The numbers \( 1, 2, \ldots, n \) are written in a row in some order. For each pair of adjacent numbers, their greatest common divisor (GCD) is calculated and written on a sheet. What is the maximum possible number of distinct values among the \( n - 1 \) GCDs obtained? \\

2013 Costa Rica - Final Round, 2

Determine all even positive integers that can be written as the sum of odd composite positive integers.

1985 IMO Longlists, 72

Construct a triangle $ABC$ given the side $AB$ and the distance $OH$ from the circumcenter $O$ to the orthocenter $H$, assuming that $OH$ and $AB$ are parallel.

1994 AMC 12/AHSME, 1

Tags:
$4^4 \cdot 9^4 \cdot 4^9 \cdot 9^9=$ $ \textbf{(A)}\ 13^{13} \qquad\textbf{(B)}\ 13^{36} \qquad\textbf{(C)}\ 36^{13} \qquad\textbf{(D)}\ 36^{36} \qquad\textbf{(E)}\ 1296^{26} $

2022 Princeton University Math Competition, A8

Tags: geometry
Let $\vartriangle ABC$ have sidelengths $BC = 7$, $CA = 8$, and, $AB = 9$, and let $\Omega$ denote the circumcircle of $\vartriangle ABC$. Let circles $\omega_A$, $\omega_B$, $\omega_C$ be internally tangent to the minor arcs $BC$, $CA$, $AB$ of $\Omega$, respectively, and tangent to the segments $BC$, $CA$, $AB$ at points $X$, $Y$, and, $Z$, respectively. Suppose that $\frac{BX}{XC} = \frac{CY}{Y A} = \frac{AZ}{ZB} = \frac12$ . Let $t_{AB}$ be the length of the common external tangent of $\omega_A$ and $\omega_B$, let $t_{BC}$ be the length of the common external tangent of $\omega_B$ and $\omega_C$, and let $t_{CA}$ be the length of the common external tangent of $\omega_C$ and $\omega_A$. If $t_{AB} + t_{BC} + t_{CA}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$, find $m + n$.

2015 Kyiv Math Festival, P3

Is it true that every positive integer greater than $50$ is a sum of $4$ positive integers such that each two of them have a common divisor greater than $1$?

1988 AMC 8, 4

Tags:
The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by $ \text{(A)}\ 7\qquad\text{(B)}\ 8\qquad\text{(C)}\ 9\qquad\text{(D)}\ 10\qquad\text{(E)}\ 11 $ [asy] unitsize(12); for(int a=0; a<7; ++a) { fill((2a,0)--(2a+1,0)--(2a+1,1)--(2a,1)--cycle,black); draw((2a+1,0)--(2a+2,0)); } for(int b=7; b<15; ++b) { fill((b,14-b)--(b+1,14-b)--(b+1,15-b)--(b,15-b)--cycle,black); } for(int c=1; c<7; ++c) { fill((c,c)--(c+1,c)--(c+1,c+1)--(c,c+1)--cycle,black); } for(int d=1; d<6; ++d) { draw((2d+1,1)--(2d+2,1)); } fill((6,4)--(7,4)--(7,5)--(6,5)--cycle,black); draw((5,4)--(6,4)); fill((7,5)--(8,5)--(8,6)--(7,6)--cycle,black); draw((7,4)--(8,4)); fill((8,4)--(9,4)--(9,5)--(8,5)--cycle,black); draw((9,4)--(10,4)); label("same",(6.3,2.45),N); label("pattern here",(7.5,1.4),N);[/asy]

2022 Saint Petersburg Mathematical Olympiad, 3

Tags: algebra
Ivan and Kolya play a game, Ivan starts. Initially, the polynomial $x-1$ is written of the blackboard. On one move, the player deletes the current polynomial $f(x)$ and replaces it with $ax^{n+1}-f(-x)-2$, where $\deg(f)=n$ and $a$ is a real root of $f$. The player who writes a polynomial which does not have real roots loses. Can Ivan beat Kolya?

2005 Estonia National Olympiad, 2

Tags: algebra
Let $a, b$ and $c$ be real numbers such that $\frac{a}{b + c}+\frac{b}{c + a}+\frac{c}{a + b}= 1$. Prove that $\frac{a^2}{b + c}+\frac{b^2}{c + a}+\frac{c^2}{a + b}= 0$.

1999 Miklós Schweitzer, 4

A permutation f of the set of integers is called bounded if | x - f (x) | is bounded. Bounded permutations with permutation multiplication form a group W. Show that the additive group of rational numbers is not isomorphic to any subgroup of W.

2019 Online Math Open Problems, 17

Tags:
For an ordered pair $(m,n)$ of distinct positive integers, suppose, for some nonempty subset $S$ of $\mathbb R$, that a function $f:S \rightarrow S$ satisfies the property that $f^m(x) + f^n(y) = x+y$ for all $x,y\in S$. (Here $f^k(z)$ means the result when $f$ is applied $k$ times to $z$; for example, $f^1(z)=f(z)$ and $f^3(z)=f(f(f(z)))$.) Then $f$ is called \emph{$(m,n)$-splendid}. Furthermore, $f$ is called \emph{$(m,n)$-primitive} if $f$ is $(m,n)$-splendid and there do not exist positive integers $a\le m$ and $b\le n$ with $(a,b)\neq (m,n)$ and $a \neq b$ such that $f$ is also $(a,b)$-splendid. Compute the number of ordered pairs $(m,n)$ of distinct positive integers less than $10000$ such that there exists a nonempty subset $S$ of $\mathbb R$ such that there exists an $(m,n)$-primitive function $f: S \rightarrow S$. [i]Proposed by Vincent Huang[/i]

2025 Caucasus Mathematical Olympiad, 5

Given a $20 \times 25$ board whose rows are numbered from $1$ to $20$ and whose columns are numbered from $1$ to $25$, Nikita wishes to place one precious stone in some cells of this board so that at least one stone is present and the following magical condition holds: for any $1 \leqslant i \leqslant 20$ and $1 \leqslant j \leqslant 25$, there is a stone in the cell at the intersection of the $i^\text{th}$ row and the $j^\text{th}$ column if and only if the cross formed by the union of the $i^\text{th}$ row and the $j^\text{th}$ column contains exactly $i + j$ stones. Determine whether Nikita's wish is achievable.

2006 Harvard-MIT Mathematics Tournament, 10

Tags:
Somewhere in the universe, $n$ students are taking a $10$-question math competition. Their collective performance is called [i]laughable[/i] if, for some pair of questions, there exist $57$ students such that either all of them answered both questions correctly or none of them answered both questions correctly. Compute the smallest $n$ such that the performance is necessarily laughable.

2010 Romania National Olympiad, 2

Let $A,B,C\in \mathcal{M}_n(\mathbb{R})$ such that $ABC=O_n$ and $\text{rank}\ B=1$. Prove that $AB=O_n$ or $BC=O_n$.

2006 Indonesia MO, 3

Let $ S$ be the set of all triangles $ ABC$ which have property: $ \tan A,\tan B,\tan C$ are positive integers. Prove that all triangles in $ S$ are similar.

2018 Harvard-MIT Mathematics Tournament, 1

Tags: team , rectangle , geometry
In an $n \times n$ square array of $1\times1$ cells, at least one cell is colored pink. Show that you can always divide the square into rectangles along cell borders such that each rectangle contains exactly one pink cell.

2012 Turkey Team Selection Test, 2

In an acute triangle $ABC,$ let $D$ be a point on the side $BC.$ Let $M_1, M_2, M_3, M_4, M_5$ be the midpoints of the line segments $AD, AB, AC, BD, CD,$ respectively and $O_1, O_2, O_3, O_4$ be the circumcenters of triangles $ABD, ACD, M_1M_2M_4, M_1M_3M_5,$ respectively. If $S$ and $T$ are midpoints of the line segments $AO_1$ and $AO_2,$ respectively, prove that $SO_3O_4T$ is an isosceles trapezoid.

Novosibirsk Oral Geo Oly IX, 2022.6

Triangle $ABC$ is given. On its sides $AB$, $BC$ and $CA$, respectively, points $X, Y, Z$ are chosen so that $$AX : XB =BY : YC = CZ : ZA = 2:1.$$ It turned out that the triangle $XYZ$ is equilateral. Prove that the original triangle $ABC$ is also equilateral.

2019 Thailand TST, 3

Tags: inequalities
Find the maximal value of \[S = \sqrt[3]{\frac{a}{b+7}} + \sqrt[3]{\frac{b}{c+7}} + \sqrt[3]{\frac{c}{d+7}} + \sqrt[3]{\frac{d}{a+7}},\] where $a$, $b$, $c$, $d$ are nonnegative real numbers which satisfy $a+b+c+d = 100$. [i]Proposed by Evan Chen, Taiwan[/i]

2014-2015 SDML (Middle School), 14

Tags:
Hull Street is nine miles long. The first two miles of Hull Street are in Richmond, and the last two miles of the street are in Midlothian. If Kathy starts driving along Hull Street from a random point in Richmond and stops on the street at a random point in Midlothian, what is the probability that Kathy drove less than six miles? $\text{(A) }\frac{1}{16}\qquad\text{(B) }\frac{1}{9}\qquad\text{(C) }\frac{1}{8}\qquad\text{(D) }\frac{1}{6}\qquad\text{(E) }\frac{1}{4}$

2021 Azerbaijan IMO TST, 1

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

2013 AMC 8, 7

Tags:
Trey and his mom stopped at a railroad crossing to let a train pass. As the train began to pass, Trey counted 6 cars in the first 10 seconds. It took the train 2 minutes and 45 seconds to clear the crossing at a constant speed. Which of the following was the most likely number of cars in the train? $\textbf{(A)}\ 60 \qquad \textbf{(B)}\ 80 \qquad \textbf{(C)}\ 100 \qquad \textbf{(D)}\ 120 \qquad \textbf{(E)}\ 140$

2009 Swedish Mathematical Competition, 6

On a table lie $289$ coins that form a square array $17 \times 17$. All coins are facing with the crown up. In one move, it is possible to reverse any five coins lying in a row: vertical, horizontal or diagonal. Is it possible that after a number of such moves, all the coins to be arranged with tails up?

1986 IMO Longlists, 79

Tags: geometry
Let $AA_1,BB_1, CC_1$ be the altitudes in an acute-angled triangle $ABC$, $K$ and $M$ are points on the line segments $A_1C_1$ and $B_1C_1$ respectively. Prove that if the angles $MAK$ and $CAA_1$ are equal, then the angle $C_1KM$ is bisected by $AK.$

2005 Purple Comet Problems, 2

We glue together $990$ one inch cubes into a $9$ by $10$ by $11$ inch rectangular solid. Then we paint the outside of the solid. How many of the original $990$ cubes have just one of their sides painted?